Review

Advances in Protein Biomarker Assay via the Combination of Molecular Imprinting and Surface-enhanced Raman Scattering

  • Hui He ,
  • Lingli Zhou ,
  • Zhen Liu
Expand
  • a State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Received date: 2020-08-14

  Online published: 2020-11-27

Supported by

the Key Scientific Instrument and Equipment Development Project(21627810); the Key Grant of the National Natural Science Foundation of China.(21834003)

Abstract

Abnormal protein expression closely correlates with the occurrence and development of diseases. Thus, proteins have been widely used as disease markers for early diagnosis, treatment monitoring and prognosis evaluation of diseases. However, protein biomarkers in clinical samples are usually present in extremely low concentration while the detection often suffers from severe interference by high-abundance sample matrix, which challenges the specificity and sensitivity of protein biomarker assay methods. Currently, the main detection method of protein biomarkers is immunoassay. Nevertheless, immunoassay mainly relies on antibodies for specific recognition, and antibodies are associated with disadvantages such as difficulty in preparation, poor stability, and high-cost. Meanwhile, immunoassay is mainly based on fluorescence and chemiluminescence to achieve high-sensitivity detection, but they have inherent defects such as cumbersome operation, photobleaching and broad spectrum. Molecularly imprinted polymers (MIP) have developed as biomimetic recognition materials with antibody-comparable specificity and affinity, while offering advantages such as ease in preparation, good stability and low cost. On the other hand, surface-enhanced Raman scattering (SERS) has been widely used in chemical or biological assays due to its merits including ultra-high sensitivity, narrow spectrum, speed, non-destructivity, and so on. In recent years, the combination of molecular imprinting and SERS has generated a series of advanced protein detection methods that exhibited unique strengths, which has gained wide attention. This review aims to survey the main advances of this hybrid analytical technique. After introduction of MIP and SERS as well as their separate applications in the detection of protein biomarkers, we mainly focus on the combination of MIP and SERS as well as its application in protein biomarker detection. We finally briefly sketch the future development of this hybrid analytical method.

Cite this article

Hui He , Lingli Zhou , Zhen Liu . Advances in Protein Biomarker Assay via the Combination of Molecular Imprinting and Surface-enhanced Raman Scattering[J]. Acta Chimica Sinica, 2021 , 79(1) : 45 -57 . DOI: 10.6023/A20080364

References

[1]
Sawyers, C.L. Nature 2008, 452, 548.
[2]
Tentler, J.J.; Tan, A.C.; Weekes, C.D.; Jimeno, A.; Leong, S.; Pitts, T.M.; Arcaroli, J.J.; Messersmith, W.A.; Eckhardt, S.G. Nat. Rev. Clin. Onco. 2012, 9, 338.
[3]
Schwarzenbach, H.; Nishida, N.; Calin, G.A.; Pantel, K. Nat. Rev. Clin. Onco. 2014, 11, 145.
[4]
Schumacher, T.N.; Schreiber, R.D. Science 2015, 348, 69.
[5]
Topalian, S.L.; Taube, J.M.; Anders, R.A.; Pardoll, D.M. Nat. Rev. Cancer 2016, 16, 275.
[6]
Zhang, J.; Liu, H.; Meng, L. Chinese J. Org. Chem. 2019, 39, 3132 . (in Chinese)
[6]
张继东, 刘鸿泽, 孟丽, 有机化学, 2019, 39, 3132.
[7]
Wulfkuhle, J.D.; Liotta, L.A.; Petricoin, E.F. Nat. Rev. Cancer 2003, 3, 267.
[8]
Morin, P.J. Cancer Res. 2005, 65, 9603.
[9]
Wu, L.; Qu, X.G. Chem. Soc. Rev. 2015, 44, 2963.
[10]
Song, Y.; Wei, W.; Qu, X. Adv. Mater. 2011, 23, 4215.
[11]
Wang, X.; Wang, C.; Qu, K.; Song, Y.; Ren, J.; Miyoshi, D.; Sugimoto, N.; Qu, X. Adv. Funct. Mater. 2010, 20, 3967.
[12]
Chaubard, J.L.; Krishnamurthy, C.; Yi, W.; Smith, D.F.; Hsieh-Wilson, L.C. J. Am. Chem. Soc. 2012, 134, 4489.
[13]
Fan, L.; Jiang, Q.; Pan, M.; Wang, W.; Zhang, L.; Liu, X. Acta Chim. Sinica 2020, 78, 419 . (in Chinese)
[13]
樊蕾, 江群英, 潘敏, 王文晓, 张丽, 刘晓庆, 化学学报, 2020, 78, 419.
[14]
He, L.L.; Rodda, T.; Haynes, C.L.; Deschaines, T.; Strother, T.; Diez-Gonzalez, F.; Labuza, T.P. Anal. Chem. 2011, 83, 1510.
[15]
Wang, Z.Y.; Zong, S.F.; Li, W.; Wang, C.L.; Xu, S.H.; Chen, H.; Cui, Y.P. J. Am. Chem. Soc. 2012, 134, 2993.
[16]
Lee, M.; Lee, K.; Kim, K.H.; Oh, K.W.; Choo, J. Lab Chip 2012, 12, 3720.
[17]
Li, M.; Kang, J.W.; Sukumar, S.; Dasari, R.R.; Barman, I. Chem. Sci. 2015, 6, 3906.
[18]
Li, J.; Dong, S.J.; Tong, J.J.; Zhu, P.Z.; Diao, G.W.; Yang, Z.J. Chem. Commun. 2016, 52, 284.
[19]
Xiao, F.-N.; Wang, M.; Wang, F.-B.; Xia, X.-H. Small 2014, 10, 706.
[20]
Munge, B.S.; Coffey, A.L.; Doucette, J.M.; Somba, B.K.; Malhotra, R.; Patel, V.; Gutkind, J.S.; Rusling, J.F. Angew. Chem. Int. Ed. 2011, 50, 7915.
[21]
Prats-Alfonso, E.; Sisquella, X.; Zine, N.; Gabriel, G.; Guimera, A.; Javier del Campo, F.; Villa, R.; Eisenberg, A.H.; Mrksich, M.; Errachid, A.; Aguilo, J.; Albericio, F. Small 2012, 8, 2106.
[22]
de la Escosura-Muniz, A.; Merkoci, A. Small 2011, 7, 675.
[23]
Wang, S.; Haque, F.; Rychahou, P.G.; Evers, B.M.; Guo, P. ACS Nano 2013, 7, 9814.
[24]
Thomas, J.M.; Chakraborty, B.; Sen, D.; Yu, H.-Z. J. Am. Chem. Soc. 2012, 134, 13823.
[25]
Yang, H.-W.; Lin, C.-W.; Hua, M.-Y.; Liao, S.-S.; Chen, Y.-T.; Chen, H.-C.; Weng, W.-H.; Chuang, C.-K.; Pang, S.-T.; Ma, C.-C.M. Adv. Mater. 2014, 26, 3662.
[26]
Lai, G.; Wu, J.; Ju, H.; Yan, F. Adv. Funct. Mater. 2011, 21, 2938.
[27]
Diamandis, E.P. Mol. Cell. Proteomics 2004, 3, 367.
[28]
Clark, M.F.; Adams, A.N. J. Gen. Virol. 1977, 34, 475.
[29]
Engvall, E.; Perlmann, P. Immunochemistry 1971, 8, 871.
[30]
Reen, D.J. Methods Mol. Biol. 1994, 32, 461.
[31]
Zheng, G.F.; Patolsky, F.; Cui, Y.; Wang, W.U.; Lieber, C.M. Nat. Biotechnol. 2005, 23, 1294.
[32]
Xu, J.J.; Haupt, K.; Bui, B.T.S. ACS Appl. Mater. Interfaces 2017, 9, 24476.
[33]
Chianella, I.; Guerreiro, A.; Moczko, E.; Caygill, J.S.; Piletska, E.V.; Sansalvador, I.M.P. D. V.; Whitcombe, M.J.; Piletsky, S.A. Anal. Chem. 2013, 85, 8462.
[34]
Li, L.; Lu, Y.; Bie, Z.J.; Chen, H.Y.; Liu, Z. Angew. Chem. Int. Ed. 2013, 52, 7451.
[35]
Sun, X.; Jian, Y.; Wang, H.; Ge, S.; Yan, M.; Yu, J. ACS Appl. Mater. Interfaces 2019, 11, 16198.
[36]
Schlucker, S. Angew. Chem. Int. Ed. 2014, 53, 4756.
[37]
Grubisha, D.S.; Lipert, R.J.; Park, H.Y.; Driskell, J.; Porter, M.D. Anal. Chem. 2003, 75, 5936.
[38]
Bantz, K.C.; Meyer, A.F.; Wittenberg, N.J.; Im, H.; Kurtulus, O.; Lee, S.H.; Lindquist, N.C.; Oh, S.-H.; Haynes, C.L. Phys. Chem. Chem. Phys. 2011, 13, 11551.
[39]
Nie, S.; Emory, S.R. Science 1997, 275, 1102.
[40]
Wackerlig, J.; Lieberzeit, P.A. Sensor. Actuat. B-Chem. 2015, 207, 144.
[41]
Szlag, V.M.; Rodriguez, R.S.; He, J.Y.; Hudson-Smith, N.; Kang, H.; Le, N.; Reineke, T.M.; Haynes, C.L. ACS Appl. Mater. Interfaces 2018, 10, 31825.
[42]
Guo, X.T.; Li, J.H.; Arabi, M.; Wang, X.Y.; Wang, Y.Q.; Chen, L.X. ACS Sensors 2020, 5, 601.
[43]
Wulff, G.; Liu, J.Q. Acc. Chem. Res. 2012, 45, 239.
[44]
Chen, L.X.; Wang, X.Y.; Lu, W.H.; Wu, X.Q.; Li, J.H. Chem. Soc. Rev. 2016, 45, 2137.
[45]
BelBruno, J.J. Chem. Rev. 2019, 119, 94.
[46]
Xing, R.; Wen, Y.; He, H.; Guo, Z.; Liu, Z. TrAC-Trend Anal. Chem. 2019, 110, 417.
[47]
Pan, J.M.; Chen, W.; Ma, Y.; Pan, G.Q. Chem. Soc. Rev. 2018, 47, 5574.
[48]
Wang, S.S.; Wen, Y.R.; Wang, Y.J.; Ma, Y.Y.; Liu, Z. Anal. Chem. 2017, 89, 5646.
[49]
Yin, D.Y.; Li, X.L.; Ma, Y.Y.; Liu, Z. Chem. Commun. 2017, 53, 6716.
[50]
Dong, Y.R.; Li, W.; Gu, Z.K.; Xing, R.R.; Ma, Y.Y.; Zhang, Q.; Liu, Z. Angew. Chem. Int. Ed. 2019, 58, 10621.
[51]
Whitcombe, M.J.; Chianella, I.; Larcombe, L.; Piletsky, S.A.; Noble, J.; Porter, R.; Horgan, A. Chem. Soc. Rev. 2011, 40, 1547.
[52]
Liu, Z.; He, H. Acc. Chem. Res. 2017, 50, 2185.
[53]
Zhang, H. Adv. Mater. 2020, 32, 1806328.
[54]
Yang, K.; Li, S.; Liu, L.; Chen, Y.; Zhou, W.; Pei, J.; Liang, Z.; Zhang, L.; Zhang, Y. Adv. Mater. 2019, 31, 1902048.
[55]
Ge, Y.; Turner, A. Trends Biotechnol. 2008, 26, 218.
[56]
Shi, H.; Tsai, W.; Garrison, M.D.; Ferrari, S.; Ratner, B.D. Nature 1999, 398, 593.
[57]
Gao, D.; Zhang, Z.; Wu, M.; Xie, C.; Guan, G.; Wang, D. J. Am. Chem. Soc. 2007, 129, 7859.
[58]
Poma, A.; Guerreiro, A.; Whitcombe, M.J.; Piletska, E.V.; Turner, A.P.; Piletsky, S.A. Adv. Funct. Mater. 2013, 23, 2821.
[59]
Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, S. Nat. Protoc. 2016, 11, 443.
[60]
Daoud Attieh, M.; Zhao, Y.; Elkak, A.; Falcimaigne-Cordin, A.; Haupt, K. Angew. Chem. Int. Ed. 2017, 56, 3339.
[61]
Mahajan, R.; Rouhi, M.; Shinde, S.; Bedwell, T.S.; Incel, A.; Mavliutova, L.; Piletsky, S.A.; Nicholls, I.A.; Sellergren, B. Angew. Chem. Int. Ed. 2019, 58, 727.
[62]
Shen, X.; Ye, L. Chem. Commun. 2011, 47, 10359.
[63]
Shen, X.; Zhou, T.; Ye, L. Chem. Commun. 2012, 48, 8198.
[64]
Shen, X.; Bonde, J.S.; Kamra, T.; Bulow, L.; Leo, J.C.; Linke, D.; Ye, L. Angew. Chem. Int. Ed. 2014, 53, 10687.
[65]
Wang, S.; Ye, J.; Bie, Z.; Liu, Z. Chem. Sci. 2014, 5, 1135.
[66]
Bi, X.D.; Liu, Z. Anal. Chem. 2014, 86, 12382.
[67]
Bi, X.D.; Liu, Z. Anal. Chem. 2014, 86, 959.
[68]
Moremen, K.W.; Tiemeyer, M.; Nairn, A.V. Nat. Rev. Mol. Cell Biol. 2012, 13, 448.
[69]
Xiong, Y.; Chen, Y.; Ju, H. Acta Chim. Sinica 2019, 77, 1221 . (in Chinese)
[69]
熊莹莹, 陈云龙, 鞠熀先, 化学学报, 2019, 77, 1221.
[70]
Bie, Z.; Chen, Y.; Ye, J.; Wang, S.; Liu, Z. Angew. Chem. Int. Ed. 2015, 54, 10211.
[71]
Bie, Z.; Xing, R.; He, X.; Ma, Y.; Chen, Y.; Liu, Z. Anal. Chem. 2018, 90, 9845.
[72]
Xing, R.; Wang, S.; Bie, Z.; He, H.; Liu, Z. Nat. Protoc. 2017, 12, 964.
[73]
Yin, D.Y.; Wang, S.S.; He, Y.J.; Liu, J.; Zhou, M.; Ouyang, J.; Liu, B.R.; Chen, H.Y.; Liu, Z. Chem. Commun. 2015, 51, 17696.
[74]
Chen, Y.; Li, X.L.; Yin, D.Y.; Li, D.J.; Bie, Z.J.; Liu, Z. Chem. Commun. 2015, 51, 10929.
[75]
He, H.; Muhammad, P.; Guo, Z.C.; Peng, Q.L.; Lu, H.F.; Liu, Z. Biosens. Bioelectron. 2019, 146, 10.
[76]
Pearce, O.M.; Laubli, H. Glycobiology 2016, 26, 111.
[77]
Shinde, S.; El-Schich, Z.; Malakpour, A.; Wan, W.; Dizeyi, N.; Mohammadi, R.; Rurack, K.; Gjorloff Wingren, A.; Sellergren, B. J. Am. Chem. Soc. 2015, 137, 13908.
[78]
Panagiotopoulou, M.; Salinas, Y.; Beyazit, S.; Kunath, S.; Duma, L.; Prost, E.; Mayes, A.G.; Resmini, M.; Tse Sum Bui, B.; Haupt, K. Angew. Chem. Int. Ed. 2016, 55, 8244.
[79]
Wang, S.; Yin, D.; Wang, W.; Shen, X.; Zhu, J.J.; Chen, H.Y.; Liu, Z. Sci. Rep. 2016, 6, 22757.
[80]
Gu, Z.; Dong, Y.; Xu, S.; Wang, L.; Liu, Z. Angew. Chem. Int. Ed. 2020. DOI: 10.1002/anie.202012956.
[81]
Nishino, H.; Huang, C.-S.; Shea, K.J. Angew. Chem. Int. Ed. 2006, 45, 2392.
[82]
Hoshino, Y.; Kodama, T.; Okahata, Y.; Shea, K.J. J. Am. Chem. Soc. 2008, 130, 15242.
[83]
Zeng, Z.; Patel, J.; Lee, S.H.; McCallum, M.; Tyagi, A.; Yan, M.; Shea, K.J. J. Am. Chem. Soc. 2012, 134, 2681.
[84]
Yoshimatsu, K.; Koide, H.; Hoshino, Y.; Shea, K.J. Nat. Protoc. 2015, 10, 595.
[85]
Liu, M.; Huang, R.; Weisman, A.; Yu, X.; Lee, S.H.; Chen, Y.; Huang, C.; Hu, S.; Chen, X.; Tan, W.; Liu, F.; Chen, H.; Shea, K.J. J. Am. Chem. Soc. 2018, 140, 6853.
[86]
Titirici, M.M.; Hall, A.J.; Sellergren, B. Chem. Mater. 2003, 15, 822.
[87]
Pan, G.; Shinde, S.; Yeung, S.Y.; Jakštaitė, M.; Li, Q.; Wingren, A.G.; Sellergren, B. Angew. Chem. Int. Ed. 2017, 56, 15959.
[88]
Urraca, J.L.; Aureliano, C.S.; Schillinger, E.; Esselmann, H.; Wiltfang, J.; Sellergren, B. J. Am. Chem. Soc. 2011, 133, 9220.
[89]
Canfarotta, F.; Lezina, L.; Guerreiro, A.; Czulak, J.; Petukhov, A.; Daks, A.; Smolinska-Kempisty, K.; Poma, A.; Piletsky, S.; Barlev, N.A. Nano Lett. 2018, 18, 4641.
[90]
Medina Rangel, P.X.; Moroni, E.; Merlier, F.; Gheber, L.A.; Vago, R.; Tse Sum Bui, B.; Haupt, K. Angew. Chem. Int. Ed. 2020, 59, 2816.
[91]
Pan, G.; Guo, Q.; Ma, Y.; Yang, H.; Li, B. Angew. Chem. Int. Ed. 2013, 52, 6907.
[92]
Qin, Y.T.; Peng, H.; He, X.W.; Li, W.Y.; Zhang, Y.K. Anal. Chem. 2019, 91, 12696.
[93]
Peng, H.; Qin, Y.T.; He, X.W.; Li, W.Y.; Zhang, Y.K. ACS Appl. Mater. Interfaces 2020, 12, 13360.
[94]
Yang, K.; Liu, J.; Li, S.; Li, Q.; Wu, Q.; Zhou, Y.; Zhao, Q.; Deng, N.; Liang, Z.; Zhang, L.; Zhang, Y. Chem. Commun. 2014, 50, 9521.
[95]
Yang, K.; Li, S.; Liu, J.; Liu, L.; Zhang, L.; Zhang, Y. Anal. Chem. 2016, 88, 5621.
[96]
Hoshino, Y.; Koide, H.; Urakami, T.; Kanazawa, H.; Kodama, T.; Oku, N.; Shea, K.J. J. Am. Chem. Soc. 2010, 132, 6644.
[97]
Dechtrirat, D.; Jetzschmann, K.J.; Stöcklein, W.F.M.; Scheller, F.W.; Gajovic-Eichelmann, N. Adv. Funct. Mater. 2012, 22, 5231.
[98]
Yang, Y.Q.; He, X.W.; Wang, Y.Z.; Li, W.Y.; Zhang, Y.K. Biosens. Bioelectron. 2014, 54, 266.
[99]
Lu, C.H.; Zhang, Y.; Tang, S.F.; Fang, Z.B.; Yang, H.H.; Chen, X.; Chen, G.N. Biosens. Bioelectron. 2012, 31, 439.
[100]
Xing, R.; Ma, Y.; Wang, Y.; Wen, Y.; Liu, Z. Chem. Sci. 2019, 10, 1831.
[101]
Li, D.J.; Chen, Y.; Liu, Z. Chem. Soc. Rev. 2015, 44, 8097.
[102]
Xing, R.; Wen, Y.; Dong, Y.; Wang, Y.; Zhang, Q.; Liu, Z. Anal. Chem. 2019, 91, 9993.
[103]
Crapnell, R.D.; Canfarotta, F.; Czulak, J.; Johnson, R.; Betlem, K.; Mecozzi, F.; Down, M.P.; Eersels, K.; van Grinsven, B.; Cleij, T.J.; Law, R.; Banks, C.E.; Peeters, M. ACS Sensors 2019, 4, 2838.
[104]
Baldoneschi, V.; Palladino, P.; Banchini, M.; Minunni, M.; Scarano, S. Biosens. Bioelectron. 2020, 157, 112161.
[105]
Yan, Y.-J.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. Biosens. Bioelectron. 2017, 91, 253.
[106]
Li, D.-Y.; Zhang, X.-M.; Yan, Y.-J.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. Biosens. Bioelectron. 2016, 79, 187.
[107]
Tchinda, R.; Tutsch, A.; Schmid, B.; Sussmuth, R.D.; Altintas, Z. Biosens. Bioelectron. 2019, 123, 260.
[108]
Karimian, N.; Vagin, M.; Zavar, M.H.A.; Chamsaz, M.; Turner, A.P.F.; Tiwari, A. Biosens. Bioelectron. 2013, 50, 492.
[109]
Moreira, F.T.C.; Dutra, R.A.F.; Noronha, J.P.C.; Cunha, A.L.; Sales, M.G.F. Biosens. Bioelectron. 2011, 28, 243.
[110]
Ribeiro, J.A.; Pereira, C.M.; Silva, A.F.; Sales, M.G.F. Biosens. Bioelectron. 2018, 109, 246.
[111]
Sun, B.H.; Ni, X.J.; Cao, Y.H.; Cao, G.Q. Biosens. Bioelectron. 2017, 91, 354.
[112]
You, M.; Yang, S.; Tang, W.; Zhang, F.; He, P.-G. ACS Appl. Mater. Interfaces 2017, 9, 13855.
[113]
Campion, A.; Kambhampati, P. Chem. Soc. Rev. 1998, 27, 241.
[114]
McFarland, A.D.; Young, M.A.; Dieringer, J.A.; Van Duyne, R.P. J. Phys. Chem. B 2005, 109, 11279.
[115]
Kneipp, K.; Kneipp, H.; Kneipp, J. Acc. Chem. Res. 2006, 39, 443.
[116]
Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Van Duyne, R.R. Annu. Rev. Anal. Chem. 2008, 1, 601.
[117]
Lee, H.K.; Lee, Y.H.; Koh, C.S.L.; Phan-Quang, G.C.; Han, X.; Lay, C.L.; Sim, H.Y.F.; Kao, Y.C.; An, Q.; Ling, X.Y. Chem. Soc. Rev. 2019, 48, 731.
[118]
Lane, L.A.; Qian, X.M.; Nie, S.M. Chem. Rev. 2015, 115, 10489.
[119]
Nam, J.-M.; Oh, J.-W.; Lee, H.; Suh, Y.D. Acc. Chem. Res. 2016, 49, 2746.
[120]
Ding, S.Y.; Yi, J.; Li, J.F.; Ren, B.; Wu, D.Y.; Panneerselvam, R.; Tian, Z.Q. Nat. Rev. Mater. 2016, 1, 16021.
[121]
Zrimsek, A.B.; Chiang, N.; Mattei, M.; Zaleski, S.; McAnally, M.O.; Chapman, C.T.; Henry, A.-I.; Schatz, G.C.; Van Duyne, R.P. Chem. Rev. 2016, 117, 7583.
[122]
Li, J.F.; Zhang, Y.J.; Ding, S.Y.; Panneerselvam, R.; Tian, Z.Q. Chem. Rev. 2017, 117, 5002.
[123]
Zong, C.; Xu, M.; Xu, L.-J.; Wei, T.; Ma, X.; Zheng, X.-S.; Hu, R.; Ren, B. Chem. Rev. 2018, 118, 4946.
[124]
Xu, L.-J.; Zong, C.; Zheng, X.-S.; Hu, P.; Feng, J.-M.; Ren, B. Anal. Chem. 2014, 86, 2238.
[125]
Wackerbarth, H.; Klar, U.; Gunther, W.; Hildebrandt, P. Appl. Spectrosc. 1999, 53, 283.
[126]
Soldatova, A.V.; Ibrahim, M.; Olson, J.S.; Czernuszewicz, R.S.; Spiro, T.G. J. Am. Chem. Soc. 2010, 132, 4614.
[127]
Feng, M.L.; Tachikawa, H. J. Am. Chem. Soc. 2008, 130, 7443.
[128]
Matteini, P.; Cottat, M.; Tavanti, F.; Panfilova, E.; Scuderi, M.; Nicotra, G.; Menziani, M.C.; Khlebtsov, N.; de Angelis, M.; Pini, R. ACS Nano 2017, 11, 918.
[129]
Xu, H.X.; Bjerneld, E.J.; Kall, M.; Borjesson, L. Phys. Rev. Lett. 1999, 83, 4357.
[130]
Zhang, H.; Kou, Y.; Li, J.; Chen, L.; Mao, Z.; Han, X.X.; Zhao, B.; Ozaki, Y. Anal. Chem. 2019, 91, 1213.
[131]
Bai, X.-R.; Wang, L.-H.; Ren, J.-Q.; Bai, X.-W.; Zeng, L.-W.; Shen, A.-G.; Hu, J.-M. Anal. Chem. 2019, 91, 2955.
[132]
Su, Y.; Wu, D.; Chen, J.; Chen, G.; Hu, N.; Wang, H.; Wang, P.; Han, H.; Li, G.; Wut, Y. Anal. Chem. 2019, 91, 11687.
[133]
Wang, J.R.; Xia, C.; Yang, L.; Li, Y.F.; Li, C.M.; Huang, C.Z. Anal. Chem. 2020, 92, 4046.
[134]
Chen, Z.; Tabakman, S.M.; Goodwin, A.P.; Kattah, M.G.; Daranciang, D.; Wang, X.; Zhang, G.; Li, X.; Liu, Z.; Utz, P.J.; Jiang, K.; Fan, S.; Dai, H. Nat. Biotechnol. 2008, 26, 1285.
[135]
Grubisha, D.S.; Lipert, R.J.; Park, H.-Y.; Driskell, J.; Porter, M.D. Anal. Chem. 2003, 75, 5936.
[136]
Qi, G.; Li, H.; Zhang, Y.; Li, C.; Xu, S.; Wang, M.; Jin, Y. Anal. Chem. 2019, 91, 1408.
[137]
Cheng, Z.; Choi, N.; Wang, R.; Lee, S.; Moon, K.C.; Yoon, S.-Y.; Chen, L.; Choo, J. ACS Nano 2017, 11, 4926.
[138]
Ye, J.; Chen, Y.; Liu, Z. Angew. Chem. Int. Ed. 2014, 53, 10386.
[139]
Feng, J.; Li, X.; Cheng, H.; Huang, W.; Kong, H.; Li, Y.; Li, L. Microchim. Acta 2019, 186, 774.
[140]
Liu, J.; Yin, D.Y.; Wang, S.S.; Chen, H.Y.; Liu, Z. Angew. Chem. Int. Ed. 2016, 55, 13215.
[141]
Tu, X.Y.; Muhammad, P.; Liu, J.; Ma, Y.Y.; Wang, S.S.; Yin, D.Y.; Liug, Z. Anal. Chem. 2016, 88, 12363.
[142]
Muhammad, P.; Tu, X.Y.; Liu, J.; Wang, Y.J.; Liu, Z. ACS Appl. Mater. Interfaces 2017, 9, 12082.
[143]
Li, W.; Zhang, Q.; Wang, Y.J.; Ma, Y.Y.; Guo, Z.C.; Liu, Z. Anal. Chem. 2019, 91, 4831.
[144]
Muhammad, P.; Liu, J.; Xing, R.; Wen, Y.; Wang, Y.; Liu, Z. Anal. Chim. Acta 2017, 995, 34.
[145]
Liu, J.; Wen, Y.; He, H.; Chen, H.-Y.; Liu, Z. Chem. Sci. 2018, 9, 7241.
[146]
Zhang, Q.; Liu, J.; Dong, Y.; Li, W.; Xing, R.; Ma, Y.; Liu, Z. ACS Appl. Nano Mater. 2019, 2, 3960.
[147]
Ma, Y.; Li, X.; Liu, J.; Li, W.; Liu, Z. ACS Sensors 2020, 5, 1436.
[148]
Carneiro, M.C.C. G.; Sousa-Castillo, A.; Correa-Duarte, M.A.; Sales, M.G.F. Biosens. Bioelectron. 2019, 146, 111761.
[149]
Lin, X.L.; Wang, Y.Y.; Wang, L.N.; Lu, Y.D.; Li, J.; Lu, D.C.; Zhou, T.; Huang, Z.F.; Huang, J.; Huang, H.F.; Qiu, S.F.; Chen, R.; Lin, D.; Feng, S.Y. Biosens. Bioelectron. 2019, 143, 10.
[150]
Zhou, L.; Wang, Y.; Xing, R.; Chen, J.; Liu, J.; Li, W.; Liu, Z. Biosens. Bioelectron. 2019, 145, 111729.
[151]
Lv, Y.Q.; Qin, Y.T.; Svec, F.; Tan, T.W. Biosens. Bioelectron. 2016, 80, 433.
[152]
Zhang, T.; Qin, Y.T.; Tan, T.W.; Lv, Y.Q. Part. Part. Syst. Charact. 2018, 35, 10.
[153]
Su, K.; Zhang, Y.; Chen, S.; Zuo, S.; Ha, Y.; Dan, J.; Chen, W.; Sun, C.; Dai, Z.; Shi, X. Appl. Surf. Sci. 2019, 492, 108.
[154]
Chen, S.N.; Dong, L.J.; Yan, M.; Dai, Z.X.; Sun, C.H.; Li, X. R. Soc. Open Sci. 2018, 5, 9.
[155]
Ren, X.; Yang, L.; Li, Y.; Cheshari, E.C.; Li, X. Spectrochim. Acta A 2020, 228, 117764.
[156]
Li, M.; Li, J.; Di, H.; Liu, H.; Liu, D. Anal. Chem. 2017, 89, 3532.
[157]
Li, S.; Chen, T.; Wang, Y.; Liu, L.; Lv, F.; Li, Z.; Huang, Y.; Schanze, K.S.; Wang, S. Angew. Chem. Int. Ed. 2017, 56, 13455.
[158]
Wang, W.; Zhao, F.; Li, M.; Zhang, C.; Shao, Y.; Tian, Y. Angew. Chem. Int. Ed. 2019, 58, 5256.
[159]
Zhang, K.; Wang, Y.; Wu, M.; Liu, Y.; Shi, D.; Liu, B. Chem. Sci. 2018, 9, 8089.
[160]
Liu, J.; Cai, C.; Wang, Y.; Liu, Y.; Huang, L.; Tian, T.; Yao, Y.; Wei, J.; Chen, R.; Zhang, K.; Liu, B.; Qian, K. Adv. Sci. 2020, 7, 1903730.
[161]
Duan, W.; Yue, Q.; Liu, Y.; Zhang, Y.; Guo, Q.; Wang, C.; Yin, S.; Fan, D.; Xu, W.; Zhuang, J.; Gong, J.; Li, X.; Huang, R.; Chen, L.; Aime, S.; Wang, Z.; Feng, J.; Mao, Y.; Zhang, X.-Y.; Li, C. Chem. Sci. 2020, 11, 4397.
Outlines

/