Article

Different Degradation Mechanism of CH3NH3PbI3 Based Perovskite Solar Cells under Ultraviolet and Visible Light Illumination

  • Yue Lu ,
  • Yang Ge ,
  • Manling Sui
Expand
  • a Institute of Microstructure and Properties of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124
    b Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124

Received date: 2020-10-15

  Online published: 2020-12-24

Supported by

National Key Research and Development Program of China(2016YFB0700700); National Natural Science Foundation of China(11704015); National Natural Science Foundation of China(51621003); National Natural Science Foundation of China(12074016); General Program of Science and Technology Development Project of Beijing Municipal Education Commission(KM202110005003); Beijing Innovation Team Building Program, China(IDHT20190503)

Abstract

In recent years, the photoelectronic conversion efficiency (PCE) of organic-inorganic halide perovskite solar cell (PSC) devices has been improved greatly. However, these devices are not very stable, and it is hard to avoid the effect of visible or ultraviolet (UV) light on the performance decay of the organic-inorganic halide perovskite devices, and there is rare report on the evolution process of the microstructure of PSCs under the light illumination, let along discussing on the different degradation mechanism of PSCs between the UV and visible light soaking. To address these scientific issues, in this study, we compared the performance evolution of CH3NH3PbI3 (MAPbI3) based PSCs during the UV and visible light irradiation. The experimental results show that the perovskite layer has been photodegraded from MAPbI3into an amorphous phase under the white light LED soaking. Meanwhile, the migration of Au element from the electrode into the interface between MAPbI3 and SnO2 layers can also be captured. As comparing the kinetics of redox reaction of Au, we found that the formation rate of Au nanoparticle mass in PSCs under UV light irradiation is almost 30 times higher than that under visible light illumination. Considering on the different characteristics of microstructure evolution in PSCs under the UV and visible light irradiation, and theoretically analyzing the energy level of each functional layers in the device, the results confirm that UV light is easy to be adsorbed by electron transportation layer (ETL) of SnO2 to excite the electron-hole pairs, while the photo-excited holes have a low energy level of –8.4 eV, which could oxidize the iodide ions (I ) into atomic iodine (I atom). The I atoms would diffuse into the spiro-OMeTAD layer and metal electrode interface. Due to its strong oxidation property, the I atom would not only destroy the spiro-OMeTAD layer, but also oxidize the Au metal electrode into AuI, which accelerated the generation of Au+. However, under the illumination of visible light, it is hard to excite the electron-hole pairs in SnO2, which prevents the damage on the functional interfaces, and the transportation energy barrier is unchanged. So, the open circuit voltage (Voc) has a long-term photo-stability. However, the short-circuit current density (Jsc) decreased rapidly under visible light illumination, which is mostly ascribed to the changes of charge mobility resulting from the migration of Au element and photodecomposition of MAPbI3 layer. All these results give a new insight to understand the photo-instability of PSC.

Cite this article

Yue Lu , Yang Ge , Manling Sui . Different Degradation Mechanism of CH3NH3PbI3 Based Perovskite Solar Cells under Ultraviolet and Visible Light Illumination[J]. Acta Chimica Sinica, 2021 , 79(3) : 344 -352 . DOI: 10.6023/A20100476

References

[1]
National Renewable Energy Laboratory NREL. Best Research-Cell Efficiency Chart 2020, https://www.nrel.gov/pv/cell-efficiency.html.
[2]
Ji, J.; Liu, X.; Jiang, H. R.; Duan, M. J.; Liu, B. Y.; Huang, H.; Wei, D.; Li, Y. D.; Li, M. C. iScience 2020, 23,101013.
[3]
Wang, M. H.; Wan, L.; Gao, X, Y.; Yuan, W. B.; Fang, J. F.; Tao, Y. T.; Huang, W. Acta Chim. Sinica 2019, 77,741. c62e2ed1-c90e-4832-afd9-25274164b4e9
[3]
( 王梦涵, 万里, 高旭宇, 袁文博, 方俊峰, 陶友田, 黄维, 化学学报, 2019, 77,741.) c62e2ed1-c90e-4832-afd9-25274164b4e9
[4]
Li, X.; Zhang, T. Y.; Wang, T.; Zhao, Y. X. Acta Chim. Sinica 2019, 77,1075.
[4]
( 李鑫, 张太阳, 王甜, 赵一新, 化学学报, 2019, 77, 1075.)
[5]
Liu, X.; Wang, Y. B.; Wu, T. H.; He, X.; Meng, X. Y.; Barbaud, J. L.; Chen, H.; Segawa, H.; Yang, X. D.; Han, L. Y. Nat. Commun. 2020, 11,2678.
[6]
Wang, Y. B.; Wu, T. H.; Barbaud, J.L; Kong, W. Y.; Chen, H.; Yang, X. D.; Han, L. Y. Science 2019, 365,687.
[7]
Yang, Y.; Zhu, C. T.; Lin, F. Y.; Chen, T.; Pan, D. Q.; Guo, X. Y. Acta Chim. Sinica 2019, 77,964. 5a45d5ba-a7b8-4619-b37e-b2fcd6fdda67
[7]
( 杨英, 朱从潭, 林飞宇, 陈甜, 潘德群, 郭学益. 化学学报, 2019, 77,964.) 5a45d5ba-a7b8-4619-b37e-b2fcd6fdda67
[8]
Li, N. X.; Tao, S. X.; Chen, Y. H.; Niu, X. X.; Onwudinati, C. K.; Hu, C.; Qiu, Z. W.; Xu, Z. Q.; Zheng, G. H. J.; Wang, L. G.; Zhang, Y.; Li, L.; Liu, H. F.; Lun, Y. Z.; Hong, J. W.; Wang, X. X.; Liu, Y. Q.; Xie, H. P.; Gao, Y. L.; Bai, Y.; Yang, S. H.; Brocks, G.; Chen, Q.; Zhou, H. P. Nat. Energy 2019, 4,408.
[9]
Ren, H.; Yu, S. D.; Chao, L. F.; Xia, Y. D.; Sun, Y. H.; Zuo, S. W.; Li, F.; Niu, T. T.; Yang, Y. G.; Ju, h. X.; Du, H. Y.; Gao, X. Y.; Zhang, J.; Wang, J. P.; Zhang, L. J.; Chen, Y. H.; Huang, W. Nat. Photonics 2020, 14,154.
[10]
Chen, X. Y.; Xie, J. J.; Wang, W.; Yuan, H. H.; Xu, D.; Zhang, T.; He, Y. L.; Shen, H. J. Acta Chim. Sinica 2019, 77,9. 9c89b163-7dd0-4ca5-a4dd-1c917b3bf498
[10]
( 陈薪羽, 解俊杰, 王炜, 袁慧慧, 许頔, 张焘, 何云龙, 沈沪江. 化学学报, 2019, 77,9.) 9c89b163-7dd0-4ca5-a4dd-1c917b3bf498
[11]
Li, X. D.; Zhang, W. X.; Wang, Y. C.; Zhang, W. J.; Wang, H. Q.; Fang, J. F. Nat. Commun. 2018, 9,3806.
[12]
Li, N. X.; Niu, X. X.; Chen, Q.; Zhou, H. P. Chem. Soc. Rev. 2020, 49,8235.
[13]
Ono, L. K.; Qi, Y. B.; Liu, S. Z. Joule 2018, 2,1961.
[14]
Meng, L.; You, J. B.; Yang, Y. Nat. Commun. 2018, 9,5265.
[15]
Boyd, C. C.; Cheacharoen, R.; Leijtens, T.; McGehee, M. D. Chem. Rev. 2019, 119,3418.
[16]
Qu, Q. D.; Bao, X. Z.; Zhang, Y. A.; Shao, H. Y.; Xing, G. H.; Li, X. P.; Shao, L. Y.; Bao, Q. L. Nano Mater. Sci. 2019, 1,268.
[17]
Qaid, S. M. H.; Al Sobaie, M. S.; Khan, M. A.; Bedja, I. M.; Alharbi, F. H.; Nazeeryddin, M. K.; Aldwayyan, A. S. Mater. Lett. 2016, 164,498.
[18]
Eames, C.; Frost, J. M.; Barnes, P. R.; O’regan, B. C.; Walsh, A.; Islam, M. S. Nat. Commun. 2015, 6,7497.
[19]
Meloni, S.; Moehl, T.; Tress, W.; Franckevi?ius, M.; Saliba, M.; Lee, Y. H.; Gao, P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Rothlisberger, U.; Graetzel, M. Nat. Commun. 2016, 7,10334.
[20]
Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Energ. Environ. Sci. 2015, 8,2118.
[21]
Setlow, R. B. Natl. Acad. Sci. 1974, 71,3363.
[22]
Travkin, V. V.; Yunin, P. A.; Fedoseev, A. N.; Okhapkin, A. I.; Sachkov, Y. I.; Pakhomov, G. L. Solid State. Sci. 2020, 99,106051.
[23]
Lu, Y.; Ge, Y.; Sui, M. L. Acta Phys.-Chim. Sin. 2021, 37,2007088.
[23]
( 卢岳, 葛杨, 隋曼龄, 物理化学学报, 2021, 37,2007088.)
[24]
Lee, S. W.; Kim, S.; Bae, S.; Cho, K.; Chung, T.; Mundt, L. E.; Lee, S.; Park, S.; Park, H.; Schubert, M. C.; Glunz, S. W.; Ko, Y.; Jun, Y. Kang, Y.; Lee, H. S.; Kim, D. Sci. Rep. 2016, 6,38150.
[25]
Nickel, N. H.; Lang, F.; Brus, V. V.; Shargaieva, O.; Rappich, J. Adv. Electron. Mater. 2017, 3,1700158.
[26]
Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Nat. Commun. 2013, 4,3885.
[27]
Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. Nat. Energy 2016, 2,16177.
[28]
Farooq, A.; Hossain, I. M.; Moghadamzadeh, S.; Schwenzer, J. A.; Abzieher, T.; Richards, B.; Klampaftis, E.; Paetzold, U. W. ACS Appl. Mater. Interfaces 2018, 10,21985.
[29]
Roose, B.; Baena, J. P. C.; G?del, K. C.; Graetzel, M.; Hagfeldt, A.; Steiner, U.; Abate, A. Nano Energy 2016, 30,517.
[30]
Zou, W. Y.; Gonzalez, A; Jampaiah, D.; Ramanathan, R.; Taha, M.; Walia, S.; Sriram, S.; Bhaskaran, M.; Dominguez-Vera, J. M.; Bansal, V. Nat. Commun. 2018, 9,3743.
[31]
Bella, F.; Griffini, G.; Correa-Baena, J. P.; Saracco, G.; Gr?tzel, M.; Hagfeldt, A.; Turri, S.; Gerbaldi, C. Science 2016, 354,203.
[32]
Krishnan, U.; Kaur, M.; Kumar, M.; Kumar, A. J. Photon. Energy 2019, 9,021001.
[33]
Sun, Y.; Fang, X.; Ma, Z.; Xu, L.; Lu, Y.; Yu, Q.; Yuan, N. Y.; Ding, J. J. Mater. Chem. C 2017, 5,8682.
[34]
Ito, S.; Tanaka, S.; Manabe, K.; Nishino, H. J. Phys. Chem. C 2014, 118,16995.
[35]
Wang, S. H.; Jiang, Y.; Juarez-Perez, E. J.; Ono, L. K.; Qi, Y. B. Nat. Energy 2017, 2,16195.
[36]
Beresolin, B. M.; Hammouda, S. B.; Sillanpaa, M. Nanomaterials 2020, 10,115.
[37]
Lang F. X.; Shargaieva O.; Brus V. V.; Neitzert H. C.; Rappich J.; Nickel N. H. Adv. Mater. 2018, 30,1702905.
[38]
Song, Z. M.; Wang, C. L.; Phillips, A. B.; Grice, C. R.; Zhao, D. W.; Yu, Y.; Chen, C.; Li, C; W.; Yin, X. X.; Ellingson, R. J.; Heben, M; J.; Yan, Y. F. Sustain. Energ. Fuels. 2018, 2,2460.
[39]
Tang, X.; Brandl, M.; May, B.; Levchuk, I.; Hou, Y.; Richter, M.; Chen, H. W.; Chen, S.; Kahmann, S.; Osvet, A.; Maier, F.; Steinrück, H. P.; Hock, R.; Matt, G. J.; Brabec, C. J. Mater. Chem. A 2016, 4,15896.
[40]
Juarez-Perez, E. J.; Ono, L. K.; Maeda, M.; Jiang, Y.; Hawash, Z.; Qi, Y. J. Mater. Chem. A 2018, 6,9604.
[41]
Xiong, L. B.; Guo, Y. X.; Wen, J.; Liu, H. R.; Yang, G.; Qin, P. L.; Fang, G. J. Adv. Funct. Mater. 2018, 28,1802757.
[42]
Bai, H.; Kanda, H. Asiri, A.; Nazeeruddin, M.; Mallick, T. Sustainable Energy Fuels 2020, 4,528.
[43]
Ompong, D.; Singh, J. Org. Electron. 2018, 63,104.
[44]
Williams, D. B.; Carter, C. B. The transmission electron microscope. Springer, Boston, MA, 1996, pp.3-17.
[45]
Shlenskay, N. N.; Belich, N. A.; Gr?tzel, M.; Goodilin, E. A. Tarasov, A. B. J. Mater. Chem. A. 2018, 6,1780.
[46]
Ming, W, M.; Yang, D. W.; Li, T. S.; Zhang, L. J.; Du, M. H. Adv. Sci. 2018, 5.1700662.
[47]
Jiang, C. S.; Yang, M.; Zhou, Y.; To, B.; Nanayakkara, S. U.; Luther, J. M.; Zhou, W. L.; Berry, J. J.; de Lagemaat, J. van.; Padture, N. P.; Zhu, K.; Al-Jassim, M. M. Nat. Commun. 2015, 6,8397.
[48]
Hang, P. J.; Xie, j. s.; Li, G.; Wang, Y.; Fang, D. S.; Yao. Y. X.; Xie, D. Y.; Cui, C.; Yan, K. Y.; Xu, J. B.; Yang, D. R.; Yu, X. G. iScience 2019, 21,217.
[49]
Bakra, Z. H.; Wali, Q.; Fakharuddin, A.; Schmidt-Mende, L.; Brown, T. M., Jose, R. Nano Energy 2017, 34,271.
[50]
Wu, S.; Chen, R.; Zhang, S.; Babu, B. H.; Yue, Y.; Zhu, H.; Yang, Z. C.; Chen, C. L.; Chen, W. T.; Huang, Y. Q.; Fang, S. Y.; Liu, T. L.; Han, L. Y.; Chen, W. Nat. Commun. 2019, 10,1161.
[51]
Barboni, D.; Souza, R. A. Energ. Environ. Sci. 2018, 11,3266.
[52]
Wang, S.; Yuan, W.; Meng, Y. S. ACS Appl. Mater. Inter. 2015, 7,24791.
[53]
Sanchez, R. S.; Mas-Marza, E. Sol. Energ. Mate. Sol. C. 2016, 158,189.
[54]
Khenkin, M. V.; Katz, E. A.; Abate, A.; Bardizza, G.; Berry, J. J.; Brabec, C. J.; Brunetti, F.; Bulovic, V.; Burlingame, Q.; Di Carlo, A.; Cheacharoen, R.; Cheng, Y. B.; Colsmann, A.; Cros, S.; Domanski, K.; Dusza, M.; Fell, C. J.; Forrest, S. R.; Galagan, Y.; Di Girolamo, D.; Gr?tzel, M.; Hagfeldt, A.; von Hauff, E.; Hoppe, H.; Kettle, J.; K?bler, H.; Leite, M. S.; Liu, S. (Frank); Loo, Y. L.; Luther, J. M.; Ma, C. Q.; Madsen, M.; Manceau, M.; Matheron, M.; McGehee, M.; Meizner, R.; Nazeeruddin, M. K.; Nogueira, A. F.; Odaba, ?.; Osherov, A.; Park, N. G.; Reese, M. O.; De Rossi, F.; Saliba, M.; Schubert, U. S.; Snaith, H. J.; Stranks, S. D.; Tress, W.; Troshin, P. A.; Turkovic, V.; Veenstra, S.; Visoly-Fisher, I.; Walsh, A.; Watson, T.; Xie, H. B.; Y?ld?r?m, R.; Zakeeruddin, S. M.; Zhu, K.; Lira-Cantu, M. Nat. Energy 2020, 5,35.
[55]
Lu, Y.; Yin, W. J.; Peng, K. L.; Wang, K.; Hu, Q.; Selloni, A.; Liu, L. M.; Sui, M. L. Nat. Commun. 2018, 9,2752.
Outlines

/