Research Progress of Metal(I) Substitution in Cu2ZnSn(S,Se)4 Thin Film Solar Cells
Received date: 2020-10-04
Online published: 2020-12-31
Supported by
National Natural Science Foundation of China (NSFC)(51961165108); National Natural Science Foundation of China (NSFC)(51421002); National Natural Science Foundation of China (NSFC)(51972332); National Natural Science Foundation of China (NSFC)(51627803); National Natural Science Foundation of China (NSFC)(U2002216)
Cu2ZnSn(S,Se)4 solar cell (CZTSSe), as a new type of inorganic thin-film solar cells, has been widely studied in recent years due to the advantages of earth-abundant and environmental-friendly composition elements, high light absorption coefficient and adjustable band gap. CZTSSe solar cell is thus a highly competitive photovoltaic device with potential applications in flexibility, building integrated photovoltaics (BIPV) and so on. So far, 12.6% certified efficiency has been achieved for this kind of solar cells. Open-circuit voltage (VOC) deficit is always the key factor to unsatisfied efficiency of CZTSSe solar cells, and band tailing, mismatch of energy band structure and deep level defects are the main causes to VOC deficit. Typically, Cu-Zn disorder-induced defects widely exist in the bulk absorber, due to similar radius of Cu and Zn elements could lead to relatively low formation energy of CuZn and ZnCu anti-site defects. Metal(I) substitution is an effective way to solve Cu-Zn disorder, which can well reduce VOC deficit via lowering band tailing and improving the device structure, leading to better cell performance. However, very few review papers have focused on the metal(I) substitution work. In this review, we will summarize the research progress of metal(I) substitution in Cu2ZnSn(S,Se)4 thin film solar cells. Part I introduces the structure and problems of CZTSSe solar cells. Part II shows the origin of metal(I) substitution and theoretical research on substituted materials. Part III focuses on synthetic methods about metal(I) partial substitution devices and influence on crystal growth, band tailing, interface defects and band structure. Part IV briefly introduces metal(I) total substitution devices. Part V anticipates the prospects and bottleneck of metal(I) substitution devices, and give some possible solutions to these current issues.
Jiazheng Zhou , Xiao Xu , Biwen Duan , Jiangjian Shi , Yanhong Luo , Huijue Wu , Dongmei Li , Qingbo Meng . Research Progress of Metal(I) Substitution in Cu2ZnSn(S,Se)4 Thin Film Solar Cells[J]. Acta Chimica Sinica, 2021 , 79(3) : 303 -318 . DOI: 10.6023/A20100457
[1] | Yang, Y.; Zhu, C.; Lin, F.; Chen, T.; Pan, D.; Guo, X. Acta Chim. Sinica 2019, 77,964. (in Chinese) 5a45d5ba-a7b8-4619-b37e-b2fcd6fdda67 |
[1] | ( 杨英, 朱从潭, 林飞宇, 陈甜, 潘德群, 郭学益, 化学学报, 2019, 77,964.) 5a45d5ba-a7b8-4619-b37e-b2fcd6fdda67 |
[2] | Yang, Y.; Lin, F.; Zhu, C.; Chen, T.; Ma, S.; Luo, Y.; Zhu, L.; Guo, X. Acta Chim. Sinica 2020, 78,217. (in Chinese) |
[2] | ( 杨英, 林飞宇, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益, 化学学报, 2020, 78,217.) |
[3] | Wang, W.; Wang, J.; Zheng, Z.; Hou, J. Acta Chim. Sinica 2020, 78,382. (in Chinese) |
[3] | ( 王文璇, 王建邱, 郑众, 侯剑辉, 化学学报, 2020, 78,382.) |
[4] | Hu, Y.; Wu, W.; Yu, L.; Luo, K.; Xu, X.; Li, Y.; Peng, Q. Acta Chim. Sinica 2020, 78,1246. (in Chinese) |
[4] | ( 胡瑜辉, 武文林, 于立扬, 骆开均, 徐小鹏, 李瑛, 彭强, 化学学报, 2020, 78, 1246.) |
[5] | Zhu, C.; Yang, Y.; Zhao, B.; Lin, F.; Luo, Y.; Ma, S.; Zhu, L.; Guo, X. Acta Chim. Sinica 2020, 78,1102. (in Chinese) |
[5] | ( 朱从潭, 杨英, 赵北凯, 林飞宇, 罗媛, 马书鹏, 朱刘, 郭学益, 化学学报, 2020, 78, 1102.) |
[6] | Green, M. A.; Dunlop, E. D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Ho-Baillie, A. W. Y. Prog Photovolt. 2019, 28,3. |
[7] | Fan, Y.; Qin, H.-L.; Mi, B.-X.; Gao, Z.-Q.; Huang, W. Acta Chim. Sinica 2014, 72,643. (in Chinese) dd5de443-4e4c-4810-b21a-b619675350fe |
[7] | ( 范勇, 秦宏磊, 密保秀, 高志强, 黄维, 化学学报, 2014, 72,643.) dd5de443-4e4c-4810-b21a-b619675350fe |
[8] | Shin, B.; Zhu, Y.; Bojarczuk, N. A.; Jay Chey, S.; Guha, S. Appl. Phys. Lett. 2012, 101,053903. |
[9] | Li, J.; Zhang, Y.; Zhao, W.; Nam, D.; Cheong, H.; Wu, L.; Zhou, Z.; Sun, Y. Adv. Energy Mater. 2015, 5,1402178. |
[10] | Karade, V.; Lokhande, A.; Babar, P.; Gang, M. G.; Suryawanshi, M.; Patil, P.; Kim, J. H. Sol. Energy Mater. Sol. Cells 2019, 200,109911. |
[11] | Platzer-Bj?rkman, C.; Barreau, N.; B?r, M.; Choubrac, L.; Grenet, L.; Heo, J.; Kubart, T.; Mittiga, A.; Sanchez, Y.; Scragg, J.; Sinha, S.; Valentini, M. J. Phys. Energy 2019, 1,044005. |
[12] | Willi, K.; Thomas, S.; Erik, A.; Teoman, T.; Levent, G.; Dirk, H.; Lothar, W.; Clemens, H.; Jasmin, S.; Michael, H.; Michael, P. J. Appl. Phys. 2020, 127,165301. |
[13] | Neuschitzer, M.; Lienau, K.; Guc, M.; Barrio, L. C.; Haass, S.; Prieto, J. M.; Sanchez, Y.; Espindola-Rodriguez, M.; Romanyuk, Y.; Perez-Rodriguez, A.; Izquierdo-Roca, V.; Saucedo, E. J. Phys. D: Appl. Phys. 2016, 49,125602. |
[14] | Li, J.-J.; Liu, X.-R.; Liu, W.; Wu, L.; Ge, B.-H.; Lin, S.-P.; Gao, S.-S.; Zhou, Z.-Q.; Liu, F.-F.; Sun, Y.; Ao, J.-P.; Zhu, H.-B.; Mai, Y.-H.; Zhang, Y. Solar RRL. 2017, 1,1700075. |
[15] | Yan, C.; Liu, F.-Y.; Song, N.; Ng, B. K.; Stride, J. A.; Tadich, A.; Hao, X.-J. Appl. Phys. Lett. 2014, 104,173901. |
[16] | Lee, J.; Enkhbat, T.; Han, G.; Sharif, M. H.; Enkhbayar, E.; Yoo, H.; Kim, J. H.; Kim, S. Y.; Kim, J. H. Nano Energy 2020, 78,105206. |
[17] | Cui, X.; Sun, K.; Huang, J.; Yun, J. S.; Lee, C.-Y.; Yan, C.; Sun, H.; Zhang, Y.; Xue, C.; Eder, K.; Yang, L.; Cairney, J. M.; Seidel, J.; Ekins-Daukes, N. J.; Green, M.; Hoex, B.; Hao, X. Energy Environ. Sci. 2019, 12,2751. |
[18] | Wang, W.; Winkler, M. T.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Zhu, Y.; Mitzi, D. B. Adv. Energy Mater. 2014, 4,1301465. |
[19] | Bourdais, S.; Choné, C.; Delatouche, B.; Jacob, A.; Larramona, G.; Moisan, C.; Lafond, A.; Donatini, F.; Rey, G.; Siebentritt, S.; Walsh, A.; Dennler, G. Adv. Energy Mater. 2016, 6,1502276. |
[20] | Chen, S.; Walsh, A.; Gong, X. G.; Wei, S. H. Adv. Mater. 2013, 25,1522. |
[21] | Shin, D.; Saparov, B.; Mitzi, D. B. Adv. Energy Mater. 2017, 7,1602366. |
[22] | Duan, B.; Shi, J.; Li, D.; Luo, Y.; Wu, H.; Meng, Q. Sci. China Mater. 2020, 63,2371. |
[23] | Walsh, A.; Chen, S.; Wei, S.; Gong, X. Adv. Energy Mater. 2012, 2,400. 0150bfee-b42c-4693-a6ce-79b58c0799e7 |
[24] | Gokmen, T.; Gunawan, O.; Todorov, T. K.; Mitzi, D. B. Appl. Phys. Lett. 2013, 103,103506. |
[25] | Li, J.; Wang, D.; Li, X.; Zeng, Y.; Zhang, Y. Adv. Sci. (Weinh). 2018, 5,1700744. |
[26] | Romanyuk, Y. E.; Haass, S. G.; Giraldo, S.; Placidi, M.; Tiwari, D.; Fermin, D. J.; Hao, X.; Xin, H.; Schnabel, T.; Kauk-Kuusik, M.; Pistor, P.; Lie, S.; Wong, L. H. J. Phys. Energy 2019, 1,044004. |
[27] | Haass, S. G.; Diethelm, M.; Werner, M.; Bissig, B.; Romanyuk, Y. E.; Tiwari, A. N. Adv. Energy Mater. 2015, 5,1500712. |
[28] | Mainz, R.; Singh, A.; Levcenko, S.; Klaus, M.; Genzel, C.; Ryan, K. M.; Unold, T. Nat. Commun. 2014, 5,3133. |
[29] | Hages, C. J.; Koeper, M. J.; Miskin, C. K.; Brew, K. W.; Agrawal, R. Chem. Mater. 2016, 28,7703. |
[30] | Bree, G.; Coughlan, C.; Geaney, H.; Ryan, K. M. ACS Appl. Mater. Interfaces 2018, 10,7117. |
[31] | Wu, S.-H.; Chang, C.-W.; Chen, H.-J.; Shih, C.-F.; Wang, Y.-Y.; Li, C.-C. Chan, S.-W. Prog. Photovolt. 2017, 25,58. |
[32] | Tian, Q.; Lu, H.; Du, Y.; Fu, J.; Zhao, X.; Wu, S.; Liu, S. Solar RRL. 2018, 2,1800233. |
[33] | Guo, L.; Shi, J.; Yu, Q.; Duan, B.; Xu, X.; Zhou, J.; Wu, J.; Li, Y.; Li, D.; Wu, H.; Luo, Y.; Meng, Q. Sci. Bull. 2020, 65,738. |
[34] | Yu, Q.; Shi, J.; Guo, L.; Duan, B.; Luo, Y.; Wu, H.; Li, D.; Meng, Q. Nano Energy 2020, 76,105042. |
[35] | Haass, S. G.; Andres, C.; Figi, R.; Schreiner, C.; Bürki, M.; Romanyuk, Y. E.; Tiwari, A. N. Adv. Energy Mater. 2018, 8,1701760. |
[36] | Caballero, R.; Haass, S. G.; Andres, C.; Arques, L.; Oliva, F.; Izquierdo-Roca, V.; Romanyuk, Y. E. Front Chem. 2018, 6,5. |
[37] | Li, X.; Hou, Z.; Gao, S.; Zeng, Y.; Ao, J.; Zhou, Z.; Da, B.; Liu, W.; Sun, Y.; Zhang, Y. Solar RRL. 2018, 2,1800198. |
[38] | Yan, C.; Sun, K.; Huang, J.; Johnston, S.; Liu, F.; Veettil, B. P.; Sun, K.; Pu, A.; Zhou, F.; Stride, J. A.; Green, M. A.; Hao, X. ACS Energy Lett. 2017, 2,930. |
[39] | Kim, S.; Kim, K. M.; Tampo, H.; Shibata, H.; Niki, S. Appl. Phys. Express. 2016, 9,102301. |
[40] | Choubrac, L.; B?r, M.; Kozina, X.; Félix, R.; Wilks, R. G.; Brammertz, G.; Levcenko, S.; Arzel, L.; Barreau, N.; Harel, S.; Meuris, M.; Vermang, B. ACS Appl. Energy Mater. 2020, 3,5830. |
[41] | Moore, J.; Hages, C.; Lundstrom, M.; Agrawa, R. 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, 2012, pp.001475-001480. |
[42] | Neuschitzer, M.; Rodriguez, M. E.; Guc, M.; Marquez, J. A.; Giraldo, S.; Forbes, I.; Perez-Rodriguez, A; Saucedo, E. J. Mater. Chem. A 2018, 6,11759. |
[43] | Giraldo, S.; Neuschitzer, M.; Thersleff, T.; López-Marino, S.; Sánchez, Y.; Xie, H.; Colina, M.; Placidi, M.; Pistor, P.; Izquierdo-Roca, V.; Leifer, K.; Pérez-Rodríguez, A.; Saucedo, E. Adv. Energy Mater. 2015, 5,1501070. |
[44] | Yuan, Z.-K.; Chen, S.; Xiang, H.; Gong, X.-G.; Walsh, A.; Park, J.-S.; Repins, I; Wei, S.-H. Adv. Funct. Mater. 2015, 25,6733. |
[45] | Cui, Y.; Deng, R.; Wang, G.; Pan, D. J. Mater. Chem. 2012, 22,23136. |
[46] | Ananthoju, B.; Mohapatra, J.; Jangid, M. K.; Bahadur, D.; Medhekar, N. V.; Aslam, M. Sci. Rep. 2016, 6,35369. |
[47] | Ghosh, A.; Chaudhary, D. K.; Biswas, A.; Thangavel, R.; Udayabhanu, G. RSC Adv. 2016, 6,115204. |
[48] | Xie, Y.; Zhang, C.; Yang, G.; Yang, J.; Zhou, X.; Ma, J. J. Alloys Compd. 2017, 696,938. |
[49] | Hu, J.-Q.; Qin, C.-P.; Sun, S.-H.; Hu, Y.-M.; Zhu, Y. J. Adv. Phys. Chem. 2018, 7,55. (in Chinese) |
[49] | ( 胡俊强, 秦存鹏, 孙淑红, 胡永茂, 朱艳, 物理化学进展, 2018, 7,55). |
[50] | Li, W.; Liu, X.; Cui, H.; Huang, S.; Hao, X. J. Alloys Compd. 2015, 625,277. |
[51] | Erslev, P. T.; Lee, J.; Hanket, G. M.; Shafarman, W.N; Cohen, J. D. Thin Solid Films 2011, 519,7296. 0e86075d-5083-44cc-accc-799dcaf200a0 |
[52] | Simchi, H.; McCandless, B. E.; Kim, K.; Boyle, J. H.; Shafarman, W. N. Thin Solid Films 2013, 535,102. |
[53] | Boyle, J. H.; McCandless, B. E.; Shafarman, W. N.; Birkmire, R. W. J. Appl. Phys. 2014, 115,223504. |
[54] | Edoff, M.; Jarmar, T.; Nilsson, N. S.; Wallin, E.; Hogstrom, D.; Stolt, O.; Lundberg, O.; Shafarman, W.; Stolt, L. IEEE J. Photovolt. 2017, 7,1789. |
[55] | Zhao, Y.; Yuan, S.; Kou, D.; Zhou, Z.; Wang, X.; Xiao, H.; Deng, Y.; Cui, C.; Chang, Q.; Wu, S. ACS Appl. Mater. Interfaces 2020, 12,12717. |
[56] | Zhang, T.; Yang, Y.; Liu, D.; Tse, S. C.; Cao, W.; Feng, Z.; Chen, S.; Qian, L. Energy Environ. Sci. 2016, 9,3674. |
[57] | Xin, H.; Vorpahl, S. M.; Collord, A. D.; Braly, I. L.; Uhl, A. R.; Krueger, B. W.; Ginger, D. S.; Hillhouse, H. W. Phys. Chem. Chem. Phys. 2015, 17,23859. |
[58] | Cabas-Vidani, A.; Haass, S. G.; Andres, C.; Caballero, R.; Figi, R.; Schreiner, C.; Márquez, J. A.; Hages, C.; Unold, T.; Bleiner, D.; Tiwari, A. N.; Romanyuk, Y. E. Adv. Energy Mater. 2018, 8,1801191. |
[59] | Altamura, G.; Wang, M.; Choy, K. L. Sci. Rep. 2016, 6,22109. |
[60] | Mule, A.; Vermang, B.; Sylvester, M.; Brammertz, G.; Ranjbar, S.; Schnabel, T.; Gampa, N.; Meuris, M.; Poortmans, J. Thin Solid Films 2017, 633,156. |
[61] | Yang, Y.; Huang, L.; Pan, D. ACS Appl. Mater. Interfaces 2017, 9,23878. |
[62] | Duan, B.; Guo, L.; Yu, Q.; Shi, J.; Wu, H.; Luo, Y.; Li, D.; Wu, S.; Zheng, Z.; Meng, Q. J. Energy Chem. 2020, 40,196. |
[63] | Mangelis, P.; Aziz, A.; da Silva, I.; Grau-Crespo, R.; Vaqueiro, P.; Powell, A. V. Phys. Chem. Chem. Phys. 2019, 21,19311. |
[64] | Pyykk?, P. Phys. Rev. B 2012, 85,024115. |
[65] | Chagarov, E.; Sardashti, K.; Kummel, A. C.; Lee, Y. S.; Haight, R.; Gershon, T. S. J. Chem. Phys. 2016, 144,104704. |
[66] | Gershon, T.; Gunawan, O.; Gokmen, T.; Brew, K. W.; Singh, S.; Hopstaken, M.; Poindexter, J. R.; Barnard, E. S.; Buonassisi, T.; Haight, R. ?J. Appl. Phys. 2017, 121,174501. |
[67] | Lafond, A.; Guillot-Deudon, C.; Vidal, J.; Paris, M.; La, C.; Jobic, S. Inorg. Chem. 2017, 56,2712. |
[68] | Zhang, J.; Liao, J.; Shao, L.-X.; Xue, S.-W.; Wang, Z.-G. Chin. Phys. Lett. 2018, 35,083101. |
[69] | Gong, W.; Tabata, T.; Takei, K.; Morihama, M.; Maeda, T.; Wada, T. Phys. Status Solidi C 2015, 12,700. |
[70] | Cui, H.; Liu, X.; Liu, F.; Hao, X.; Song, N.; Yan, C. Appl. Phys. Lett. 2014, 104,041115. |
[71] | Sai Gautam, G.; Senftle, T. P.; Carter, E. A. Chem. Mater. 2018, 30,4543. |
[72] | Hsieh, Y.-T.; Han, Q.; Jiang, C.; Song, T.-B.; Chen, H.; Meng, L.; Zhou, H.; Yang, Y. Adv. Energy Mater. 2016, 6,1502386. |
[73] | López-Marino, S.; Sánchez, Y.; Espíndola-Rodríguez, M.; Alcobé, X.; Xie, H.; Neuschitzer, M.; Becerril, I.; Giraldo, S.; Dimitrievska, M.; Placidi, M.; Fourdrinier, L.; Izquierdo-Roca, V.; Pérez- Rodríguez, A.; Saucedo, E. J. Mater. Chem. A 2016, 4,1895. |
[74] | Maeda, T.; Kawabata, A.; Wada, T. Phys. Status Solidi C 2015, 12,631. |
[75] | Altamura, G.; Vidal, J. Chem. Mater. 2016, 28,3540. |
[76] | Larsen, J. K.; Scragg, J. J. S.; Ross, N.; Platzer-Bj?rkman, C. ACS Appl. Energy Mater. 2020, 3,7520. |
[77] | Gu, K.; Hao, R.; Guo, J.; Aierken, A.; Liu, X.; Chang, F.; Li, Y.; Wei, G.; Liu, B.; Wang, L.; Sun, S.; Ma, X. J. Mater. Sci. Mater. Electron. 2019, 30,20443. |
[78] | You, X.; Huang, Y.; Xie, Z.; Liang, G.; Zhu, H.; Mai, Y. J. Alloys Compd. 2020, 842,155884. |
[79] | Yang, S.; Wang, S.; Liao, H.; Xu, X.; Tang, Z.; Li, X.; Wang, T.; Li, X.; Liu, D. J. Mater. Sci. Mater. Electron. 2019, 30,11171. |
[80] | Kaur, K.; Arora, K.; Behzad, B.; Qiao, Q.; Kumar, M. Nanotechnology 2019, 30,065706. |
[81] | Gershon, T.; Lee, Y. S.; Antunez, P.; Mankad, R.; Singh, S.; Bishop, D.; Gunawan, O.; Hopstaken, M.; Haight, R. Adv. Energy Mater. 2016, 6,1502468. |
[82] | Cherns, D.; Griffiths, I. J.; Jones, L.; Bishop, D. M.; Lloyd, M. A.; McCandless, B. E. ACS Appl. Energy Mater. 2018, 1,6260. |
[83] | Oueslati, S.; Kauk-Kuusik, M.; Neubauer, C.; Mikli, V.; Meissner, D.; Brammertz, G.; Vermang, B.; Krustok, J.; Grossberg, M. Solar Energy 2020, 198,586. |
[84] | Mwakyusa, L. P.; Leist, L.; Rinke, M.; Welle, A.; Paetzold, U. W.; Richards, B. S.; Hetterich, M. Thin Solid Films 2020, 709,138223. |
[85] | Guchhait, A.; Su, Z.; Tay, Y. F.; Shukla, S.; Li, W.; Leow, S. W.; Tan, J. M. R.; Lie, S.; Gunawan, O.; Wong, L. H. ACS Energy Lett. 2016, 1,1256. |
[86] | Jing, T.; Dai, Y.; Ma, X.; Wei, W.; Huang, B. J. Phys. Chem. C 2015, 119,27900. |
[87] | Hadke, S. H.; Levcenko, S.; Lie, S.; Hages, C. J.; Márquez, J. A.; Unold, T.; Wong, L. H. Adv. Energy Mater. 2018, 8,1802540. |
[88] | Kumar, J.; Ingole, S. J. Alloys Compd. 2017, 727,1089. |
[89] | Jiang, Y.; Yao, B.; Li, Y.; Ding, Z.; Luan, H.; Jia, J.; Li, Y.; Shi, K.; Sui, Y.; Zhang, B. Mater. Sci. Semicond. Process. 2018, 81,54. |
[90] | Qi, Y.; Tian, Q.; Meng, Y.; Kou, D.; Zhou, Z.; Zhou, W.; Wu, S. ACS Appl. Mater. Interfaces 2017, 9,21243. |
[91] | Qi, Y.-F.; Kou, D.-X.; Zhou, W.-H.; Zhou, Z.-J.; Tian, Q.-W.; Meng, Y.-N.; Liu, X.-S.; Du, Z.-L.; Wu, S.-X. Energy Environ. Sci. 2017, 10,2401. |
[92] | Yang, Y.; Kang, X.; Huang, L.; Pan, D. ACS Appl. Mater. Interfaces 2016, 8,5308. |
[93] | Zhao, Y.; Han, X.; Xu, B.; Li, W.; Li, J.; Li, J.; Wang, M.; Dong, C.; Ju, P.; Li, J. IEEE J. Photovolt. 2017, 7,874. |
[94] | Huang, W.-C.; Wei, S.-Y.; Cai, C.-H.; Ho, W.-H.; Lai, C.-H. J. Mater. Chem. A 2018, 6,15170. |
[95] | Nguyen, T. H.; Kawaguchi, T.; Chantana, J.; Minemoto, T.; Harada, T.; Nakanishi, S.; Ikeda, S. ACS Appl. Mater. Interfaces 2018, 10,5455. |
[96] | Sayed, M. H.; Schoneberg, J.; Parisi, J.; Gütay, L. Mater. Sci. Semicond. Process. 2018, 76,31. |
[97] | Hages, C. J.; Koeper, M. J.; Agrawal, R. Sol. Energy Mater Sol. Cells 2016, 145,342. |
[98] | Liu, N.; Xu, F.; Zhu, Y.; Hu, Y.; Liu, G.; Wu, L.; Wu, K.; Sun, S.; Hong, F. J. Mater. Sci. Mater. Electron. 2020, 31,5760. |
[99] | Su, Z.-H.; Li, W.-J.; Asim, G.; Fan, T. Y.; Wong, L. H. 2016 IEEE 43th Photovoltaic Specialists Conference (PVSC), Portland, OR, 2016, pp.0534-0538. |
[100] | Nakamura, S.; Maeda, T.; Tabata, T.; Wada, T. 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, 2011, pp.002771-002774. |
[101] | Collord, A. D.; Hillhouse, H. W. Chem. Mater. 2016, 28,2067. |
[102] | Gong, Y.-C.; Zhang, Y.-F.; Jedlicka, E.; Giridharagopal, R.; Clark, J. A.; Yan, W.-B.; Niu, C.-Y.; Qiu, R.-C.; Jiang, J.-J.; Yu, S.-T.; Wu, S.-P.; Hillhouse, H. W.; Ginger, D. S.; Huang, W.; Xin, H. Sci. China Mater. 2020, 64,52. |
[103] | Timmo, K.; Altosaar, M.; Pilvet, M.; Mikli, V.; Grossberg, M.; Danilson, M.; Raadik, T.; Josepson, R.; Krustok, J.; Kauk-Kuusik, M. J. Mater. Chem. A 2019, 7,24281. |
[104] | Nadenau, V.; Rau, U.; Jasenek, A.; Schock, H. W. J. Appl. Phys. 2000, 87,584. |
[105] | Lundberg, O.; Bodeg?rd, M.; Malmstr?m, J.; Stolt, L. Prog. Photovolt. 2003, 11,77. |
[106] | Lundberg, O.; Edoff, M.; Stolt, L. Thin Solid Films 2005, 480-481,520. |
[107] | Guo, H.; Ma, C.; Zhang, K.; Jia, X.; Li, Y.; Yuan, N.; Ding, J. Sol. Energy Mater. Sol. Cells 2018, 178,146. |
[108] | Gershon, T.; Sardashti, K.; Gunawan, O.; Mankad, R.; Singh, S.; Lee, Y. S.; Ott, J. A.; Kummel, A.; Haight, R. Adv. Energy Mater. 2016, 6,1601182. |
[109] | Kim, S.; Lee, C. S.; Kim, S.; Chalapathy, R. B.; Al-Ammar, E. A.; Ahn, B. T. Phys. Chem. Chem. Phys. 2015, 17,19222. |
[110] | Cheyns, D.; Kam, B.; Vasseur, K.; Heremans, P.; Rand, B. P. J. Appl. Phys. 2013, 113,043109. |
[111] | Dong, L.; Cheng, S.; Lai, Y.; Zhang, H.; Jia, H. Thin Solid Films 2017, 626,168. |
[112] | Min, J. H.; Jeong, W. L.; Kim, K.; Lee, J. S.; Kim, K. P.; Kim, J.; Gang, M. G.; Hong, C. W.; Kim, J. H.; Lee, D. S. ACS Appl. Mater. Interfaces 2020, 12,8189. |
[113] | Chirila, A.; Reinhard, P.; Pianezzi, F.; Bloesch, P.; Uhl, A. R.; Fella, C.; Kranz, L.; Keller, D.; Gretener, C.; Hagendorfer, H.; Jaeger, D.; Erni, R.; Nishiwaki, S.; Buecheler, S.; Tiwari, A. N. Nat. Mater. 2013, 12,1107. |
/
〈 |
|
〉 |