Article

High Performance Aggregation-Induced Emission Nanoprobes for Image-Guided Cancer Surgery

  • Heqi Gao ,
  • Di Jiao ,
  • Hanlin Ou ,
  • Jingtian Zhang ,
  • Dan Ding
Expand
  • 1 State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China

Received date: 2020-10-31

  Online published: 2021-01-05

Supported by

National Natural Science Foundation of China(51961160730); National Natural Science Foundation of China(51873092); National Natural Science Foundation of China(81921004); National Key R&D Program of China(Intergovernmental Cooperation Project)(2017YFE0132200); and the Tianjin Science Fund for Distinguished Young Scholars(19JCJQJC61200)

Abstract

Far red/near infrared (FR/NIR) materials have attracted wide attention due to their great potential in various applications, particularly in bio-imaging. However, it is still a challenge to manufacture organic FR/NIR materials with quite high efficiency and long emission wavelength, owing to the dominance of non-radiative deactivation in the dissipation of absorbed light excitation energy when the electronic bandgap decreases. Herein, a series of donor-acceptor-donor (D-A-D) type compounds based on benzoselenidazole are developed through the regulation of molecular aggregation states by twisted conformation groups. In one hand, the compound TPE-DPA-Se (tetraphenylethylene-diphenylamine-benzoselenidazole) exhibits the best aggregation-induced emission (AIE) properties among these compounds. In another hand, the obtained TPE-DPA-Se showed over 150 nm Stokes shift, which can be used to avoid the interference between excitation and emission light, as well as the near-infrared emission spectrum away from the organism auto-fluorescence, which was beneficial for the bio-application. Next, density functional theory (DFT) calculation was carried out with Gaussian 09W program at B3LYP/6-31G** level to determine the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) distributions and the optimized structures of these compounds. Then TPE-DPA-Se was formulated into nanoparticles by nanoprecipitation method with an amphiphilic co-polymer 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy(polyethylene glycol)-2000] (MPEG2000-DSPE) as the doping matrix. TPE-DPA-Se exhibited excellent aqueous diameter stability in nanoparticle-state, as well as impressive luminescence in aqueous system with higher efficiency of up to 16.48%, which are suitable for many fields. To evaluate the biocompatibility of the TPE-DPA-Se NPs, we further carried out 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay. The result indicated their negligible toxicity. Encouraged by the excellent performance of these luminogens in nanoparticle state, a successful 4T1 cells imaging was demonstrated. Next, to set up the tumor-bearing mouse model, the luciferase-expressed 4T1 cancer cells were injected into the healthy mice via intraperitoneal injection. After about 7 days, the abdominal metastatic tumors were formed with many nodules in the abdominal cavity. The fluorescent image can merged with bioluminescence image completely and image-guided tumor resection is verified in this work, particularly for the micro-sized tumor of intraoperative detection.

Cite this article

Heqi Gao , Di Jiao , Hanlin Ou , Jingtian Zhang , Dan Ding . High Performance Aggregation-Induced Emission Nanoprobes for Image-Guided Cancer Surgery[J]. Acta Chimica Sinica, 2021 , 79(3) : 319 -325 . DOI: 10.6023/A20100501

References

[1]
(a) Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G.; Qu, C.; Diao, S.; Deng, Z.; Hu, X.; Zhang, B.; Zhang, X.; Yaghi, O. K.; Alamparambil, Z. R.; Hong, X.; Cheng, Z.; Dai, H. Nat. Mater. 2016, 15,235.
[1]
(b) Qi, J.; Chen, C.; Zhang, X.; Hu, X.; Ji, S.; Kwok, R. T. K.; Lam, J. W. Y.; Ding, D.; Tang, B. Z. Nat. Commun. 2018, 9,1848.
[1]
(c) Koch, M.; Symvoulidis, P.; Ntziachristos, V. Nat. Photonics 2018, 12,505.
[1]
(d) Jiang, Y.; Pu, K. Acc. Chem. Res. 2018, 51,1840.
[1]
(e) Gao, M.; Yu, F.; Lv, C.; Choo, J.; Chen, L. Chem. Soc. Rev. 2017, 46,2237.
[1]
(f) Zheng, X. C.; Mao, H.; Huo, D.; Wu, W.; Liu, B. R.; Jiang, X. Q. Nat. Biomed. Eng. 2017, 1,0057.
[2]
Yang, M.; Xia, L. L.; Zhou, X. Q.; Jia, C. L.; Ji, M.; Wang, P. Chin. J. Org. Chem. 2020, 40,2888. (in Chinese)
[2]
( 杨敏, 夏丽丽, 周小琴, 贾程利, 吉民, 王鹏, 有机化学, 2020, 40,2888.)
[3]
Huang, C. B.; Chen, H.; Li, F. Q.; An, S. Y. Chin. J. Org. Chem. 2019, 39,2467. (in Chinese)
[3]
( 黄池宝, 陈会, 李福琴, 安思雅, 有机化学, 2019, 39,2467.)
[4]
Yan, T.; Liu, Z. H.; Song, X. Y.; Zhang, S. S. Acta Chim. Sinica 2020, 78,657. (in Chinese)
[4]
( 闫涛, 刘振华, 宋昕玥, 张书圣, 化学学报, 2020, 78,657.)
[5]
(a) Vahrmeijer, A. L.; Hutteman, M.; van der Vorst, J. R.; van de Velde, C. J. H.; Frangioni, J. V. Nat. Rev. Clin. Oncol. 2013, 10,507.
[5]
(b) Colby, A. H.; Berry, S. M.; Moran, A. M.; Pasion, K. A.; Liu, R.; Colson, Y. L.; Ruiz-Opazo, N.; Grinstaff, M. W.; Herrera, V. L. M. ACS Nano 2017, 11,1466.
[5]
(c) Choi, H. S.; Gibbs, S. L.; Lee, J. H.; Kim, S. H.; Ashitate, Y.; Liu, F.; Hyun, H.; Park, G.; Xie, Y.; Bae, S.; Henary, M.; Frangioni, J. V. Nat. Biotechnol. 2013, 31,148.
[6]
Zimmer, M. Chem. Rev. 2002, 102,759.
[7]
Wegner, K. D.; Hildebrandt, N.; Chem. Soc. Rev. 2015, 44,4792.
[8]
Ghosh, D.; Bagley, A. F.; Na, Y. J.; Birrer, M. J.; Bhatia, S. N.; Belcher, A. M. Proc. Natl. Acad. Sci. U. S. A. 2014, 111,13948.
[9]
Xiong, L.; Fan, Y.; Zhang, F. Acta Chim. Sinica 2019, 77,1239. (in Chinese)
[9]
( 熊麟, 凡勇, 张凡, 化学学报, 2019, 77, 1239.)
[10]
Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. Chem. Rev. 2010, 110,2620.
[11]
Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Nano Lett. 2004, 4,11.
[12]
(a) He, X. X.; Wang, K. M.; Cheng, Z. Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2,349.
[12]
(b) Larush, L.; Magdassi, S. Nanomedicine 2011, 6,233.
[12]
(c) Hilderbrand, S. A.; Weissleder, R. Curr. Opin. Chem. Biol. 2010, 14,71.
[13]
Zhang, L.; Zhao, W. L.; Li, M.; Lv, H. Y.; Chen, C. F. Acta Chim. Sinica 2020, 78,1030. (in Chinese)
[13]
( 张亮, 赵文龙, 李猛, 吕海燕, 陈传峰, 化学学报, 2020, 78, 1030.)
[14]
(a) Gao, G. B.; Gong, D. J.; Zhang, M. X.; Sun, T. L. Acta Chim. Sinica 2016, 74,363. (in Chinese)
[14]
( 高冠斌, 龚德君, 张明曦, 孙涛垒, 化学学报, 2016, 74,363.)
[14]
(b) Ji, G.; Yan, L. L.; Wang, H.; Ma, L.; Xu, B.; Tian, W. J. Acta Chim. Sinica 2016, 74,917. (in Chinese)
[14]
( 纪光, 闫路林, 王慧, 马莲, 徐斌, 田文晶, 化学学报, 2016, 74,917).
[15]
(a) Chi, C.; Du, Y.; Ye, J.; Kou, D.; Qiu, J.; Wang, J.; Tian, J.; Chen, X. Theranostics 2014, 4,1072.
[15]
(b) Olson, M. T.; Ly, Q. P.; Mohs, A. M. Mol. Imaging Biol. 2018, 4,1072.
[15]
(c) Manen, L. V.; Handgraaf, H. J. M.; Diana, M.; Dijkstra, J.; Ishizawa, T.; Vahrmeijer, A. L.; Mieog, J. S. D. Surg, J. Oncol. 2018, 118,283.
[16]
(a) Qi, J.; Fang, Y.; Kwok, R. T. K.; Zhang, X.; Hu, X.; Lam, J. W. Y.; Ding, D.; Tang, B. Z. ACS Nano 2017, 11,7177.
[16]
(b) Li, K.; Ding, D.; Zhao, Q.; Sun, J.; Tang, B. Z.; Liu, B. Sci. China Chem. 2013, 56,1228.
[16]
(c) Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Cancer Res. 2008, 68,6652.
[16]
(d) Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Nano Lett. 2004, 4,11.
[17]
Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009,4332.
[18]
(a) Sakakibara, Y.; Okutsu, S.; Enokida T.; Tani, T. Appl. Phys. Lett. 1999, 74,2587.
[18]
(b) Chiang, C. L.; Wu, M. F.; Dai, D. C.; Wen, Y. S.; Wang J. K.; Chen, C. T. Adv. Funct. Mater. 2005, 15,231.
[19]
(a) Mei, J.; Leung, L. C.; Kwok, T. K.; Lam, W. Y.; Tang, B. Z. Chem. Rev. 2015, 115,11718.
[19]
(b) Xia, Z. Q.; Shao, A. D.; Li, Q.; Zhu, S. Q.; Zhu, W. H. Acta Chim. Sinica 2016, 74,351. (in Chinese)
[19]
( 夏志清, 邵安东, 李强, 朱世琴, 朱为宏, 化学学报, 2016, 74,351.)
[20]
(a) Gao, H.; Zhang, X.; Chen, C.; Li, K.; Ding, D. Adv. Biosyst. 2018, 2,1800074.
[20]
(b) Qin, A.; Tang, B. Z. Sci. China Chem. 2018, 61,879.
[20]
(c) Qi, J.; Chen, C.; Ding, D.; Tang, B. Z. Adv. Healthcare Mater. 2018, 7,1800477.
[20]
(d) Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Acc. Chem. Res. 2013, 46,2441.
[21]
(a) Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Nat. Rev. Mater. 2017, 2,16075.
[21]
(b) Farokhzad, O. C.; Langer, R. ACS Nano 2009, 3,16.
[21]
(c) Xia, L.; Cheng, Z.; Zhu, H.; Yang, Z. Acta Chim. Sinica 2019, 77,172. (in Chinese)
[21]
( 夏雷, 程震, 朱华, 杨志, 化学学报, 2019, 77,172.)
[22]
(a) Wang, J.; Wu, Y. L.; Sun, L. H.; Zeng, F.; Wu, S. Z. Acta Chim. Sinica 2016, 74,910. (in Chinese)
[22]
( 王俊, 武英龙, 孙立和, 曾钫, 吴水珠, 化学学报, 2016, 74,910.)
[22]
(b) Sang, R. Y.; Xu, X. P.; Wang, Q.; Fan, Q. L.; Huang, W. Acta Chim. Sinica 2020, 78,901. (in Chinese)
[22]
( 桑若愚, 许兴鹏, 王其, 范曲立, 黄维, 化学学报, 2020, 78,901.
[23]
Guan, X. L.; Wang, L.; Li, Z. F.; Liu, M. N.; Wang, K. L.; Lin, B.; Yang, X. Q.; Lai, S. J.; Lei, Z. Q. Acta Chim. Sinica 2019, 77,1036. (in Chinese) a5032928-6680-444d-9c35-d6d5daebdee1
[23]
( 关晓琳, 王林, 李志飞, 刘美娜, 王凯龙, 林斌, 杨学琴, 来守军, 雷自强, 化学学报, 2019, 77, 1036.) a5032928-6680-444d-9c35-d6d5daebdee1
[24]
Qin, W.; Li, Kai.; Feng, G. X.; Li, M.; Yang, Z. Y.; Liu, B.; Tang, B. Z. Adv. Funct. Mater. 2014, 24,635.
[25]
Qin, W.; Alifu, N.; Cai, Y. J.; Lam, J. W. Y.; He, X. W.; Su, H. F.; Zhang, P. F.; Qian, J.; Tang, B. Z. Chem. Commun. 2019, 55,5615.
[26]
Qi, J.; Duan, X. J.; Cai, Y. J.; Jia, S. R.; Chen, C.; Zhao, Z.; Li, Y.; Peng, H. Q.; Kwok, R. T. K.; Lam, J. W. Y.; Ding, D.; Tang, B. Z. Chem. Sci. 2020, 11,8438.
[27]
Zhen, X.; Tao, Y.; An, Z. F.; Chen, P.; Xu, C. J.; Chen, R. F.; Huang, W.; Pu, K. Y. Adv. Mater. 2017, 29,1606665.
[28]
Pandit, S.; Dutta, D.; Nie, S. Nat. Mater. 2020, 19,478.
[29]
(a) Sun, Y.; Ding, M.; Zeng, X.; Xiao, Y.; Wu, H.; Zhou, H.; Ding, B.; Qu, C.; Hou, W.; Er-Bu, A.; Zhang, Y.; Cheng, Z.; Hong, X. Chem. Sci. 2017, 8,3489.
[29]
(b) Vahrmeijer, A. L.; Hutteman, M.; van der Vorst, J. R.; van de Velde, C. J.; Frangioni, J. V. Nat. Rev. Clin. Oncol. 2013, 10,507.
[30]
Luo, X. R.; Chen, M. W.; Yang, Q. L. Acta Chim. Sinica 2020, 78,373. (in Chinese)
[30]
( 罗兴蕊, 陈敏文, 杨晴来, 化学学报, 2020, 78,373.)
Outlines

/