Preparation and Electrochemical Performance of Macroporous Ni-rich LiNi0.8Co0.1Mn0.1O2 Cathode Material
Received date: 2021-01-21
Online published: 2021-03-31
Supported by
National Natural Science Foundation of China(21473014)
High-performance rechargeable lithium-ion batteries (LIBs) have been widely applied in electrochemical energy storage fields. In recent years, Ni-rich ternary cathode materials have received considerable attention due to their low cost and high theoretical specific capacity, and they are regarded as promising candidates for the next-generation lithium-ion batteries. In this paper, macroporous Ni-rich LiNi0.8Co0.1Mn0.1O2(NCM811) cathode material has been successfully prepared by using a poly(methyl methacrylate) (PMMA) colloidal crystal template and sol-gel method. The typical experimental procedure for the synthesis of macroporous LiNi0.8Co0.1Mn0.1O2 is as follows: Firstly, a stoichiometric mixture of LiNO3, (CH3COO)2Mn∙4H2O, (CH3COO)2Co∙4H2O, and (CH3COO)2Ni∙4H2O were dissolved together in ethanol for 1 h. Acetylacetone was then drop by drop into the prepared solution under continuous stirring for 1.5 h (a molar ratio of acetylacetone to transition metal ions was 1∶1). Then, the LiNi0.8Co0.1Mn0.1O2sol was infiltrated completely into PMMA template under vacuum. After that, the as-prepared product was filtrated and dried at 50 ℃, followed by a heat treatment at 450 ℃ for 2 h for removing the PMMA template, and then calcined at 700 ℃ under a flowing oxygen atmosphere. These results suggest that the macroporous architecture stacked by the 100 nm particles is obtained by using the pore-forming agent PMMA, and this structure is beneficial to improve the rate capability and cycling stability of the Ni-rich cathode materials. Specifically, macroporous NCM811 delivers an initial discharge capacity of 190.3 mAh∙g-1 between 2.7 V and 4.3 V at 0.1C rate. The discharge specific capacity of the nanoparticle NCM811 is only 129.3 mAh∙g-1 at 2C rate, whereas the macroporous NCM811 is 149.8 mAh∙g-1 at the same rate. In addition, macroporous NCM811 can still delivers a high discharge specific capacity of 111.7 mAh∙g-1 at 10C rate. Macroporous NCM811 also exhibits superior capacity retention of 83.02% after 400 cycles at 0.5C rate, surpassing the 38.59% of nanoparticle NCM811 obviously. The macroporous architecture is conducive to shorten the transport distance of lithium ions and electrons, suppress the phase transition and structural deterioration resulting from the frequent Li+ insertion/deinsertion, reduce polarization, and thus improving the electrochemical performances, which provides new insights for the development of high-energy-density lithium-ion batteries.
Tongxin Li , Donglin Li , Qingbo Zhang , Jianhang Gao , Xiangze Kong , Xiaoyong Fan , Lei Gou . Preparation and Electrochemical Performance of Macroporous Ni-rich LiNi0.8Co0.1Mn0.1O2 Cathode Material[J]. Acta Chimica Sinica, 2021 , 79(5) : 678 -684 . DOI: 10.6023/A21010019
[1] | Lee, J.; Kitchaev, D.-A.; Kwon, D.-H.; Lee, C.-W.; Papp, J.-K.; Liu, Y.-S.; Lun, Z.-Y.; Clément, R.-J.; Shi, T.; McCloskey, B.-D.; Guo, J.-H.; Balasubramanian, M.; Ceder, G. Nature 2018, 556,185. |
[2] | Qiao, Q.-Q.; Zhang, H.-Z.; Li, G.-R.; Ye, S.-H.; Wang, C.-W.; Gao, X.-P. J. Mater. Chem. A 2013, 1,5262. |
[3] | Liu, J.-D.; Zhang, Y.-D.; Liu, J.-X.; Li, J.-H.; Qiu, X.-G.; Cheng, F.-Y. Acta Chim. Sinica 2020, 78,1426. (in Chinese). |
[3] | ( 刘九鼎, 张宇栋, 刘俊祥, 李金瀚, 邱晓光, 程方益, 化学学报, 2020, 78,1426.) |
[4] | Li, Z.; Wang, Z.; Ban, L.-Q.; Wang, J.-T.; Lu, S.-G. Acta Chim. Sinica 2019, 77,1115. (in Chinese). |
[4] | ( 李钊, 王忠, 班丽卿, 王建涛, 卢世刚, 化学学报, 2019, 77,1115.) |
[5] | Zheng, J.-C.; Yang, Z.; He, Z.-J.; Tong, H.; Yu, W.-J.; Zhang, J.-F. Nano Energy 2018, 53,613. |
[6] | Liu, Y.-Y.; Yang, Z.; Li, J.-L.; Niu, B.-B.; Yang, K.; Kang, F.-Y. J. Mater. Chem. A 2018, 6,13883. |
[7] | Zhang, X.-D.; Hao, J.-J.; Wu, L.-C.; Guo, Z.-M.; Ji, Z.-H.; Luo, J.; Chen, C.-G.; Shu, J.-F.; Long, H.-M.; Yang, F.; Volinsky, A.-A. Electrochim. Acta 2018, 283,1203. |
[8] | Li, Y.-C.; Zhao, W.-M.; Xiang, W.; Wu, Z.-G.; Yang, Z.-G.; Xu, C.-L.; Xu, Y.-D.; Wang, E.-H.; Wu, C.-J.; Guo, X.-D. J. Alloys Compd. 2018, 766,546. |
[9] | Xu, X.; Huo, H.; Jian, J.-Y.; Wang, L.-G.; Zhu, H.; Xu, S.; He, X.-S.; Yin, G.-P.; Du, C.-Y.; Sun, X.-L. Adv. Energy Mater. 2019, 9,1803963. |
[10] | Zou, P.-J.; Lin, Z.-H.; Fan, M.-N.; Wang, F.; Liu, Y.; Xiong, X.-H. Appl. Surf. Sci. 2020, 504,144506. |
[11] | Su, Y.-F.; Chen, G.; Chen, L.; Li, W.-K.; Zhang, Q.-Y.; Yang, Z.-R.; Lu, Y.; Bao, L.-Y.; Tan, J.; Chen, R.-J.; Chen, S.; Wu, F. ACS Appl. Mater. Interfaces 2018, 10,6407. |
[12] | Chen, T.; Wang, F.; Li, X.; Yan, X.-X.; Wang, H.; Deng, B.-W.; Xie, Z.-W.; Qu, M.-Z. Appl. Surf. Sci. 2019, 465,863. |
[13] | Huang, B.; Wang, M.; Zhang, X.-W.; Zhao, Z.-Y.; Chen, L.; Gu, Y.-J. J. Alloys Compd. 2020, 830,154619. |
[14] | Yang, H.-P.; Wu, H.-H.; Ge, M.-Y.; Li, L.-J.; Yuan, Y.-F.; Yao, Q.; Chen, J.; Xia, L.-F.; Zheng, J.-M.; Chen, Z.-Y.; Duan, J.-F.; Kisslinger, K.; Zeng, X.-C.; Lee, W.-K.; Zhang, Q.-B.; Lu, J. Adv. Funct. Mater. 2019, 29,1808825. |
[15] | Zhu, H.-W.; Yu, H.-F.; Jiang, H.-B.; Hu, Y.-J.; Jiang, H.; Li, C.-Z. Chem. Eng. Sci. 2020, 217,115518. |
[16] | Ryu, H.-H.; Park, K.-J.; Yoon, D.-R.; Aishova, A.; Yoon, C.-S.; Sun, Y.-K. Adv. Energy Mater. 2019, 9,1902698. |
[17] | Song, B.-H.; Li, W.-D.; Oh, S.-M.; Manthiram, A. ACS Appl. Mater. Interfaces 2017, 9,9718. |
[18] | Wang, M.; Zhang, R.; Gong, Y.-Q.; Su, Y.-F.; Xiang, D.-B.; Chen, L.; Chen, Y.-B.; Luo, M.; Chu, M. Solid State Ionics 2017, 312,53. |
[19] | Kong, J.-Z.; Zhai, H.-F.; Ren, C.; Gao, M.-Y.; Zhang, X.; Li, H.; Li, J.-X.; Tang, Z.; Zhou, F. J. Alloys Compd. 2013, 577,507. |
[20] | Li, D.-L.; Tian, M.; Xie, R.; Li, Q.; Fan, X.-Y.; Gou, L.; Zhao, P.; Ma, S.-L.; Shi, Y.-X.; Yong, H.-T.-H. Nanoscale 2014, 6,3302. |
[21] | Li, S.; Ma, G.; Guo, B.; Yang, Z.-H.; Fan, X.-M.; Chen, Z.-X.; Zhang, W.-X. Ind. Eng. Chem. Res. 2016, 55,9352. |
[22] | Li, L.-J.; Xu, M.; Yao, Q.; Chen, Z.-Y.; Song, L.-B.; Zhang, Z.-A.; Gao, C.-H.; Wang, P.; Yu, Z.-Y.; Lai, Y.-Q. ACS Appl. Mater. Interfaces 2016, 8,30879. |
[23] | Ren, D.; Yang, Y.; Shen, L.-X.; Zeng, R.; Abru?a, H.-D. J. Power Sources 2020, 447,227344. |
[24] | Su, Y.-F.; Zhang, Q.-Y.; Chen, L.; Bao, L.-Y.; Lu, Y.; Chen, S.; Wu, F. Acta Phys.-Chim. Sin. 2021, 37,1. (in Chinese). |
[24] | ( 苏岳锋, 张其雨, 陈来, 包丽颖, 卢赟, 陈实, 吴锋, 物理化学学报, 2021, 37,1.) |
[25] | Gao, S.; Cheng, Y.-T.; Shirpour, M. ACS Appl. Mater. Interfaces 2019, 11,982. |
[26] | Liu, W.; Li, X.-F.; Xiong, D.-B.; Hao, Y.-C.; Li, J.-W.; Kou, H.-R.; Yan, B.; Li, D.-J.; Lu, S.-G.; Koo, A.; Adair, K.; Sun, X.-L. Nano Energy 2018, 44,111. |
[27] | Tang, Z.-H.; Zheng, H.-H.; Qian, F.-P.; Ma, Y.-H.; Zhao, C.-Y.; Song, L.-B.; Chen, Y.; Xiong, X.; Zhu, X.-X.; Mi, C. Ionics 2018, 24,61. |
[28] | Luo, D.; Li, G.-S.; Fu, C.-C.; Zheng, J.; Fan, J.-M.; Li, Q.; Li, L.-P. Adv. Energy Mater. 2014, 4,1400062. |
[29] | Wang, H.; Ge, W.-J.; Li, W.; Wang, F.; Liu, W.-J.; Qu, M.-Z.; Peng, G.-C. ACS Appl. Mater. Interfaces 2016, 8,18439. |
[30] | Aishova, A.; Park, G.-T.; Yoon, C.-S.; Sun, Y.-K. Adv. Energy Mater. 2020, 10,1903179. |
[31] | Song, X.; Liu, G.-X.; Yue, H.-F.; Luo, L.; Yang, S.-Y.; Huang, Y.-Y.; Wang, C.-R. Chem. Eng. J. 2021, 407,126301. |
[32] | Zheng, Z.; Wu, Z.-G.; Xiang, W.; Guo, X.-D. Acta Chim. Sinica 2017, 75,501. (in Chinese). |
[32] | ( 郑卓, 吴振国, 向伟, 郭孝东, 化学学报, 2017, 75,501.) |
[33] | Zhu, X.-J.; Chen, H.-H.; Zhan, H.; Liu, H.-X.; Yang, D.-L.; Zhou, Y.-H. Chin. J. Chem. 2005, 23,491. |
[34] | Song, J.-W.; Kim, J.-Y.; Kang, T.-W.; Kim, D.-C. Sci. Rep. 2017, 7,42521. |
[35] | Ho, V.-C.; Jeong, S.-H.; Yim, T.; Mun, J.-Y. J. Power Sources 2020, 450,227625. |
[36] | Ding, G.-Y.; Gao, Y.; Li, Y.-H.; Zhu, Z.; Wang, Q.-L.; Jing, X.-G.; Yan, F.-Q.; Xu, G.-J.; Yue, Z.-H.; Li, X.-M.; Sun, F.-G. Chin. J. Inorg. Chem. 2020, 36,2307. (in Chinese). |
[36] | ( 丁国彧, 高远, 李亚辉, 朱振, 王秋琳, 景鑫国, 严奉乾, 徐国军, 岳之浩, 李晓敏, 孙福根, 无机化学学报, 2020, 36,2307.) |
[37] | He, Y.-L.; Li, Y.; Liu, Y.; Li, W.-X.; Liu, W.-B. Mater. Chem. Phys. 2020, 251,123085. |
[38] | Yao, W.-L.; Liu, Y.; Li, D.; Zhang, Q.; Zhong, S.-W.; Cheng, H.-W.; Yan, Z.-Q. J. Phys. Chem. C 2020, 124,2346. |
[39] | Sim, S.-J.; Lee, S.-H.; Jin, B.-S.; Kim, H.-S. Sci. Rep. 2019, 9,8952. |
[40] | Wu, Z.-Z.; Ji, S.-P.; Liu, T.-C.; Duan, Y.-D.; Xiao, S.; Lin, Y.; Xu, K.; Pan, F. Nano Lett. 2016, 16,6357. |
[41] | Zhu, W.; Tai, Z.-G.; Shu, C.-Y.; Chong, S.-K.; Guo, S.-W.; Ji, L.-J.; Chen, Y.-Z.; Liu, Y.-N. J. Mater. Chem. A 2020, 8,7991. |
[42] | Li, L.-J.; Chen, Z.-Y.; Zhang, Q.-B.; Xu, M.; Zhou, X.; Zhu, H.-L.; Zhang, K.-L. J. Mater. Chem. A 2015, 3,894. |
/
〈 |
|
〉 |