Article

Preparation and Electrochemical Performance of Macroporous Ni-rich LiNi0.8Co0.1Mn0.1O2 Cathode Material

  • Tongxin Li ,
  • Donglin Li ,
  • Qingbo Zhang ,
  • Jianhang Gao ,
  • Xiangze Kong ,
  • Xiaoyong Fan ,
  • Lei Gou
Expand
  • 1 Institute of Energy Materials and Device, School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China
*E-mail: Tel.: 029-82337340

Received date: 2021-01-21

  Online published: 2021-03-31

Supported by

National Natural Science Foundation of China(21473014)

Abstract

High-performance rechargeable lithium-ion batteries (LIBs) have been widely applied in electrochemical energy storage fields. In recent years, Ni-rich ternary cathode materials have received considerable attention due to their low cost and high theoretical specific capacity, and they are regarded as promising candidates for the next-generation lithium-ion batteries. In this paper, macroporous Ni-rich LiNi0.8Co0.1Mn0.1O2(NCM811) cathode material has been successfully prepared by using a poly(methyl methacrylate) (PMMA) colloidal crystal template and sol-gel method. The typical experimental procedure for the synthesis of macroporous LiNi0.8Co0.1Mn0.1O2 is as follows: Firstly, a stoichiometric mixture of LiNO3, (CH3COO)2Mn∙4H2O, (CH3COO)2Co∙4H2O, and (CH3COO)2Ni∙4H2O were dissolved together in ethanol for 1 h. Acetylacetone was then drop by drop into the prepared solution under continuous stirring for 1.5 h (a molar ratio of acetylacetone to transition metal ions was 1∶1). Then, the LiNi0.8Co0.1Mn0.1O2sol was infiltrated completely into PMMA template under vacuum. After that, the as-prepared product was filtrated and dried at 50 ℃, followed by a heat treatment at 450 ℃ for 2 h for removing the PMMA template, and then calcined at 700 ℃ under a flowing oxygen atmosphere. These results suggest that the macroporous architecture stacked by the 100 nm particles is obtained by using the pore-forming agent PMMA, and this structure is beneficial to improve the rate capability and cycling stability of the Ni-rich cathode materials. Specifically, macroporous NCM811 delivers an initial discharge capacity of 190.3 mAh∙g-1 between 2.7 V and 4.3 V at 0.1C rate. The discharge specific capacity of the nanoparticle NCM811 is only 129.3 mAh∙g-1 at 2C rate, whereas the macroporous NCM811 is 149.8 mAh∙g-1 at the same rate. In addition, macroporous NCM811 can still delivers a high discharge specific capacity of 111.7 mAh∙g-1 at 10C rate. Macroporous NCM811 also exhibits superior capacity retention of 83.02% after 400 cycles at 0.5C rate, surpassing the 38.59% of nanoparticle NCM811 obviously. The macroporous architecture is conducive to shorten the transport distance of lithium ions and electrons, suppress the phase transition and structural deterioration resulting from the frequent Li+ insertion/deinsertion, reduce polarization, and thus improving the electrochemical performances, which provides new insights for the development of high-energy-density lithium-ion batteries.

Cite this article

Tongxin Li , Donglin Li , Qingbo Zhang , Jianhang Gao , Xiangze Kong , Xiaoyong Fan , Lei Gou . Preparation and Electrochemical Performance of Macroporous Ni-rich LiNi0.8Co0.1Mn0.1O2 Cathode Material[J]. Acta Chimica Sinica, 2021 , 79(5) : 678 -684 . DOI: 10.6023/A21010019

References

[1]
Lee, J.; Kitchaev, D.-A.; Kwon, D.-H.; Lee, C.-W.; Papp, J.-K.; Liu, Y.-S.; Lun, Z.-Y.; Clément, R.-J.; Shi, T.; McCloskey, B.-D.; Guo, J.-H.; Balasubramanian, M.; Ceder, G. Nature 2018, 556,185.
[2]
Qiao, Q.-Q.; Zhang, H.-Z.; Li, G.-R.; Ye, S.-H.; Wang, C.-W.; Gao, X.-P. J. Mater. Chem. A 2013, 1,5262.
[3]
Liu, J.-D.; Zhang, Y.-D.; Liu, J.-X.; Li, J.-H.; Qiu, X.-G.; Cheng, F.-Y. Acta Chim. Sinica 2020, 78,1426. (in Chinese).
[3]
( 刘九鼎, 张宇栋, 刘俊祥, 李金瀚, 邱晓光, 程方益, 化学学报, 2020, 78,1426.)
[4]
Li, Z.; Wang, Z.; Ban, L.-Q.; Wang, J.-T.; Lu, S.-G. Acta Chim. Sinica 2019, 77,1115. (in Chinese).
[4]
( 李钊, 王忠, 班丽卿, 王建涛, 卢世刚, 化学学报, 2019, 77,1115.)
[5]
Zheng, J.-C.; Yang, Z.; He, Z.-J.; Tong, H.; Yu, W.-J.; Zhang, J.-F. Nano Energy 2018, 53,613.
[6]
Liu, Y.-Y.; Yang, Z.; Li, J.-L.; Niu, B.-B.; Yang, K.; Kang, F.-Y. J. Mater. Chem. A 2018, 6,13883.
[7]
Zhang, X.-D.; Hao, J.-J.; Wu, L.-C.; Guo, Z.-M.; Ji, Z.-H.; Luo, J.; Chen, C.-G.; Shu, J.-F.; Long, H.-M.; Yang, F.; Volinsky, A.-A. Electrochim. Acta 2018, 283,1203.
[8]
Li, Y.-C.; Zhao, W.-M.; Xiang, W.; Wu, Z.-G.; Yang, Z.-G.; Xu, C.-L.; Xu, Y.-D.; Wang, E.-H.; Wu, C.-J.; Guo, X.-D. J. Alloys Compd. 2018, 766,546.
[9]
Xu, X.; Huo, H.; Jian, J.-Y.; Wang, L.-G.; Zhu, H.; Xu, S.; He, X.-S.; Yin, G.-P.; Du, C.-Y.; Sun, X.-L. Adv. Energy Mater. 2019, 9,1803963.
[10]
Zou, P.-J.; Lin, Z.-H.; Fan, M.-N.; Wang, F.; Liu, Y.; Xiong, X.-H. Appl. Surf. Sci. 2020, 504,144506.
[11]
Su, Y.-F.; Chen, G.; Chen, L.; Li, W.-K.; Zhang, Q.-Y.; Yang, Z.-R.; Lu, Y.; Bao, L.-Y.; Tan, J.; Chen, R.-J.; Chen, S.; Wu, F. ACS Appl. Mater. Interfaces 2018, 10,6407.
[12]
Chen, T.; Wang, F.; Li, X.; Yan, X.-X.; Wang, H.; Deng, B.-W.; Xie, Z.-W.; Qu, M.-Z. Appl. Surf. Sci. 2019, 465,863.
[13]
Huang, B.; Wang, M.; Zhang, X.-W.; Zhao, Z.-Y.; Chen, L.; Gu, Y.-J. J. Alloys Compd. 2020, 830,154619.
[14]
Yang, H.-P.; Wu, H.-H.; Ge, M.-Y.; Li, L.-J.; Yuan, Y.-F.; Yao, Q.; Chen, J.; Xia, L.-F.; Zheng, J.-M.; Chen, Z.-Y.; Duan, J.-F.; Kisslinger, K.; Zeng, X.-C.; Lee, W.-K.; Zhang, Q.-B.; Lu, J. Adv. Funct. Mater. 2019, 29,1808825.
[15]
Zhu, H.-W.; Yu, H.-F.; Jiang, H.-B.; Hu, Y.-J.; Jiang, H.; Li, C.-Z. Chem. Eng. Sci. 2020, 217,115518.
[16]
Ryu, H.-H.; Park, K.-J.; Yoon, D.-R.; Aishova, A.; Yoon, C.-S.; Sun, Y.-K. Adv. Energy Mater. 2019, 9,1902698.
[17]
Song, B.-H.; Li, W.-D.; Oh, S.-M.; Manthiram, A. ACS Appl. Mater. Interfaces 2017, 9,9718.
[18]
Wang, M.; Zhang, R.; Gong, Y.-Q.; Su, Y.-F.; Xiang, D.-B.; Chen, L.; Chen, Y.-B.; Luo, M.; Chu, M. Solid State Ionics 2017, 312,53.
[19]
Kong, J.-Z.; Zhai, H.-F.; Ren, C.; Gao, M.-Y.; Zhang, X.; Li, H.; Li, J.-X.; Tang, Z.; Zhou, F. J. Alloys Compd. 2013, 577,507.
[20]
Li, D.-L.; Tian, M.; Xie, R.; Li, Q.; Fan, X.-Y.; Gou, L.; Zhao, P.; Ma, S.-L.; Shi, Y.-X.; Yong, H.-T.-H. Nanoscale 2014, 6,3302.
[21]
Li, S.; Ma, G.; Guo, B.; Yang, Z.-H.; Fan, X.-M.; Chen, Z.-X.; Zhang, W.-X. Ind. Eng. Chem. Res. 2016, 55,9352.
[22]
Li, L.-J.; Xu, M.; Yao, Q.; Chen, Z.-Y.; Song, L.-B.; Zhang, Z.-A.; Gao, C.-H.; Wang, P.; Yu, Z.-Y.; Lai, Y.-Q. ACS Appl. Mater. Interfaces 2016, 8,30879.
[23]
Ren, D.; Yang, Y.; Shen, L.-X.; Zeng, R.; Abru?a, H.-D. J. Power Sources 2020, 447,227344.
[24]
Su, Y.-F.; Zhang, Q.-Y.; Chen, L.; Bao, L.-Y.; Lu, Y.; Chen, S.; Wu, F. Acta Phys.-Chim. Sin. 2021, 37,1. (in Chinese).
[24]
( 苏岳锋, 张其雨, 陈来, 包丽颖, 卢赟, 陈实, 吴锋, 物理化学学报, 2021, 37,1.)
[25]
Gao, S.; Cheng, Y.-T.; Shirpour, M. ACS Appl. Mater. Interfaces 2019, 11,982.
[26]
Liu, W.; Li, X.-F.; Xiong, D.-B.; Hao, Y.-C.; Li, J.-W.; Kou, H.-R.; Yan, B.; Li, D.-J.; Lu, S.-G.; Koo, A.; Adair, K.; Sun, X.-L. Nano Energy 2018, 44,111.
[27]
Tang, Z.-H.; Zheng, H.-H.; Qian, F.-P.; Ma, Y.-H.; Zhao, C.-Y.; Song, L.-B.; Chen, Y.; Xiong, X.; Zhu, X.-X.; Mi, C. Ionics 2018, 24,61.
[28]
Luo, D.; Li, G.-S.; Fu, C.-C.; Zheng, J.; Fan, J.-M.; Li, Q.; Li, L.-P. Adv. Energy Mater. 2014, 4,1400062.
[29]
Wang, H.; Ge, W.-J.; Li, W.; Wang, F.; Liu, W.-J.; Qu, M.-Z.; Peng, G.-C. ACS Appl. Mater. Interfaces 2016, 8,18439.
[30]
Aishova, A.; Park, G.-T.; Yoon, C.-S.; Sun, Y.-K. Adv. Energy Mater. 2020, 10,1903179.
[31]
Song, X.; Liu, G.-X.; Yue, H.-F.; Luo, L.; Yang, S.-Y.; Huang, Y.-Y.; Wang, C.-R. Chem. Eng. J. 2021, 407,126301.
[32]
Zheng, Z.; Wu, Z.-G.; Xiang, W.; Guo, X.-D. Acta Chim. Sinica 2017, 75,501. (in Chinese).
[32]
( 郑卓, 吴振国, 向伟, 郭孝东, 化学学报, 2017, 75,501.)
[33]
Zhu, X.-J.; Chen, H.-H.; Zhan, H.; Liu, H.-X.; Yang, D.-L.; Zhou, Y.-H. Chin. J. Chem. 2005, 23,491.
[34]
Song, J.-W.; Kim, J.-Y.; Kang, T.-W.; Kim, D.-C. Sci. Rep. 2017, 7,42521.
[35]
Ho, V.-C.; Jeong, S.-H.; Yim, T.; Mun, J.-Y. J. Power Sources 2020, 450,227625.
[36]
Ding, G.-Y.; Gao, Y.; Li, Y.-H.; Zhu, Z.; Wang, Q.-L.; Jing, X.-G.; Yan, F.-Q.; Xu, G.-J.; Yue, Z.-H.; Li, X.-M.; Sun, F.-G. Chin. J. Inorg. Chem. 2020, 36,2307. (in Chinese).
[36]
( 丁国彧, 高远, 李亚辉, 朱振, 王秋琳, 景鑫国, 严奉乾, 徐国军, 岳之浩, 李晓敏, 孙福根, 无机化学学报, 2020, 36,2307.)
[37]
He, Y.-L.; Li, Y.; Liu, Y.; Li, W.-X.; Liu, W.-B. Mater. Chem. Phys. 2020, 251,123085.
[38]
Yao, W.-L.; Liu, Y.; Li, D.; Zhang, Q.; Zhong, S.-W.; Cheng, H.-W.; Yan, Z.-Q. J. Phys. Chem. C 2020, 124,2346.
[39]
Sim, S.-J.; Lee, S.-H.; Jin, B.-S.; Kim, H.-S. Sci. Rep. 2019, 9,8952.
[40]
Wu, Z.-Z.; Ji, S.-P.; Liu, T.-C.; Duan, Y.-D.; Xiao, S.; Lin, Y.; Xu, K.; Pan, F. Nano Lett. 2016, 16,6357.
[41]
Zhu, W.; Tai, Z.-G.; Shu, C.-Y.; Chong, S.-K.; Guo, S.-W.; Ji, L.-J.; Chen, Y.-Z.; Liu, Y.-N. J. Mater. Chem. A 2020, 8,7991.
[42]
Li, L.-J.; Chen, Z.-Y.; Zhang, Q.-B.; Xu, M.; Zhou, X.; Zhu, H.-L.; Zhang, K.-L. J. Mater. Chem. A 2015, 3,894.
Outlines

/