Review

Advances in Analysis of Linkage Isomers of Sialylated N-Glycans by Mass Spectrometry

  • Yueyue Li ,
  • Ye Peng ,
  • Haojie Lu
Expand
  • a Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, China
    b NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China

Received date: 2021-02-06

  Online published: 2021-03-31

Supported by

National Key Research and Development Program of China(2016YFA0501303); National Natural Science Foundation of China(21974025)

Abstract

Protein glycosylation occurs during and after the translation process, and glycosylation will diversify the function of the protein. Glycosylation directly or indirectly affects the function of proteins and their interactions, and is related to a variety of human diseases. Among them, sialylated N-glycans play a key role in many important physiological and pathological processes. Sialic acid usually bonds with adjacent monosaccharides via α-2,3-, α-2,6-, α-2,8- or α-2,9- linkage. Sialylated N-glycans with different linkage always have different functions in cell activities, physiological and pathological processes of living organisms. Mass spectrometry is an important tool for the analysis of N-glycans. It can quickly and sensitively detect N-glycans. The separation and detection of sialylated N-glycans and their linked isomers can be achieved by combining chromatographic techniques and derivatization methods with mass spectrometry. In this review, we mainly focuses on α-2,3- and α-2,6-linked sialylated N-glycans, introduces their structure and different functions in cell activities and various diseases, and summarizes the analysis methods of linked isomers of sialylated N-glycans based on mass spectrometry and the application of these methods in the field of biomedicine in recent years. This review can provide new ideas and approaches for future biomedical research.

Cite this article

Yueyue Li , Ye Peng , Haojie Lu . Advances in Analysis of Linkage Isomers of Sialylated N-Glycans by Mass Spectrometry[J]. Acta Chimica Sinica, 2021 , 79(6) : 705 -715 . DOI: 10.6023/A21020048

References

[1]
Apweiler, R.; Hermjakob, H.; Sharon, N. Biochim. Biophys. Acta 1999, 1473, 4.
[2]
Dutta, D.; Mandal, C.; Mandal, C. Biochim. Biophys. Acta 2017, 1861, 3096.
[3]
Moremen, K. W.; Tiemeyer, M.; Nairn, A. V. Nat. Rev. Mol. Cell Biol. 2012, 13, 448.
[4]
Xiong, Y.-Y.; Chen, Y.-L.; Jv, H.-X. Acta Chim. Sinica 2019, 77, 1221. (in Chinese)
[4]
(熊莹莹, 陈云龙, 鞠熀先, 化学学报, 2019, 77, 1221.)
[5]
Wang, X.-D.; Liu, Y.-J.; Li, F.-J.; Li, Z.-L. Chin. Chem. Lett. 2017, 28, 1018.
[6]
Demetriou, M.; Granovsky, M.; Quaggin, S.; Dennis, J. W. Nature 2001, 409, 733.
[7]
Ladenson, R. P.; Schwartz, S. O.; Ivy, A. C. Am. J. Med. Sci. 1949, 217, 194.
[8]
Zhou, S.; Hu, Y.; Veillon, L.; Snovida, S. I.; Rogers, J. C.; Saba, J.; Mechref, Y. Anal. Chem. 2016, 88, 7515.
[9]
Zhou, X.-M.; Yang, S.; Yang, G.-L.; Tan, Z.-Q.; Guan, F. Chin. Chem. Lett. 2019, 30, 676.
[10]
Chandrasekaran, A.; Srinivasan, A.; Raman, R.; Viswanathan, K.; Raguram, S.; Tumpey, T. M.; Sasisekharan, V.; Sasisekharan, R. Nat. Biotechnol. 2008, 26, 107.
[11]
Zlatina, K.; Saftenberger, M.; Kuhnle, A.; Galuska, C. E.; Gartner, U.; Rebl, A.; Oster, M.; Vernunft, A.; Galuska, S. P. Int. J. Mol. Sci. 2018, 19, 10.
[12]
Lv, J.; Wang, Z. X.; Li, F.; Zhang, Y.; Lu, H. J. Chem. Commun. 2019, 55, 14339.
[13]
Abercrombie, M.; Ambrose, E. J. Cancer Res. 1962, 22, 525.
[14]
Forrester, J. A.; Ambrose, E. J.; Stoker, M. G. P. Nature 1964, 201, 945.
[15]
Cazet, A.; Julien, S.; Bobowski, M.; Burchell, J.; Delannoy, P. Breast Cancer Res. 2010, 12, 204.
[16]
Schultz, M. J.; Swindall, A. F.; Bellis, S. L. Cancer Metastasis Rev. 2012, 31, 501.
[17]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. CA Cancer J. Clin. 2018, 68, 394.
[18]
Leone, J. P.; Leone, B. A. Exp. Hematol. Oncol. 2015, 4, 10.
[19]
Peng, W.; Goli, M.; Mirzaei, P.; Mechref, Y. J. Proteome Res. 2019, 18, 3731.
[20]
Kim, Y. J.; Varki, A. Glycoconjugate J. 1997, 14, 569.
[21]
Sato, C.; Kitajima, K. J. Biochem. 2013, 154, 115.
[22]
Galuska, C. E.; Lutteke, T.; Galuska, S. P. Biology 2017, 6, 27.
[23]
Lan, Y.; Hao, C.; Zeng, X.; He, Y. L.; Zeng, P. J.; Guo, Z. H.; Zhang, L. J. Am. J. Cancer Res. 2016, 6, 2390.
[24]
Ferrer-Batalle, M.; Llop, E.; Ramirez, M.; Aleixandre, R. N.; Saez, M.; Comet, J.; de Llorens, R.; Peracaula, R. Int. J. Mol. Sci. 2017, 18, 845.
[25]
Vasseur, J. A.; Goetz, J. A.; Alley, W. R., Jr.; Novotny, M. V. Glycobiology 2012, 22, 1684.
[26]
Siegel, R. L.; Miller, K. D.; Jemal, A. CA-Cancer J. Clin. 2017, 67, 7.
[27]
Mathieu, K. B.; Bedi, D. G.; Thrower, S. L.; Qayyum, A.; Bast, R. C. Ultrasound Obstet. Gynecol. 2018, 51, 293.
[28]
Dedova, T.; Braicu, E. I.; Sehouli, J.; Blanchard, V. Front. Oncol. 2019, 9, 261.
[29]
Llop, E.; Ferrer-Batalle, M.; Barrabes, S.; Guerrero, P. E.; Ramirez, M.; Saldova, R.; Rudd, P. M.; Aleixandre, R. N.; Comet, J.; de Llorens, R.; Peracaula, R. Theranostics 2018, 8, 746.
[30]
Tousi, F.; Bones, J.; Hancock, W. S.; Hincapie, M. Anal. Chem. 2013, 85, 8421.
[31]
Wang, P. H.; Lee, W. L.; Lee, Y. R.; Juang, C. M.; Chen, Y. J.; Chao, H. T.; Tsai, Y. C.; Yuan, C. C. Gynecol. Oncol. 2003, 89, 395.
[32]
Swindall, A. F.; Londono-Joshi, A. I.; Schultz, M. J.; Fineberg, N.; Buchsbaum, D. J.; Bellis, S. L. Cancer Res. 2013, 73, 2368.
[33]
Yamamoto, H.; Oviedo, A.; Sweeley, C.; Saito, T.; Moskal, J. R. Cancer Res. 2001, 61, 6822.
[34]
Julien, S.; Adriaenssens, E.; Ottenberg, K.; Furlan, A.; Courtand, G.; Vercoutter-Edouart, A. S.; Hanisch, F. G.; Delannoy, P.; Le Bourhis, X. Glycobiology 2006, 16, 54.
[35]
Sewell, R.; Backstrom, M.; Dalziel, M.; Gschmeissner, S.; Karlsson, H.; Noll, T.; Gatgens, J.; Clausen, H.; Hansson, G. C.; Burchell, J.; Taylor-Papadimitriou, J. J. Biol. Chem. 2006, 281, 3586.
[36]
Harvey, D. J. Mass Spectrom. Rev. 1999, 18, 349.
[37]
Harvey, D. J. Proteomics 2001, 1, 311.
[38]
Ruhaak, L. R.; Xu, G. G.; Li, Q. Y.; Goonatilleke, E.; Lebrilla, C. B. Chem. Rev. 2018, 118, 7886.
[39]
Cataldi, T. R. I.; Campa, C.; De Benedetto, G. E. Fresenius J. Anal. Chem. 2000, 368, 739.
[40]
Behan, J. L.; Smith, K. D. Biomed. Chromatogr. 2011, 25, 39.
[41]
Zamze, S.; Harvey, D. J.; Chen, Y. J.; Guile, G. R.; Dwek, R. A.; Wing, D. R. Eur. J. Biochem. 1998, 258, 243.
[42]
Bones, J.; McLoughlin, N.; Hilliard, M.; Wynne, K.; Karger, B. L.; Rudd, P. M. Anal. Chem. 2011, 83, 4154.
[43]
Townsend, R. R.; Hardy, M. R.; Cumming, D. A.; Carver, J. P.; Bendiak, B. Anal. Biochem. 1989, 182, 1.
[44]
Maier, M.; Reusch, D.; Bruggink, C.; Bulau, P.; Wuhrer, M.; Molhoj, M. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1033-1034 342.
[45]
Ruhaak, L. R.; Deelder, A. M.; Wuhrer, M. Anal. Bioanal. Chem. 2009, 394, 163.
[46]
Ruhaak, L. R.; Zauner, G.; Huhn, C.; Bruggink, C.; Deelder, A. M.; Wuhrer, M. Anal. Bioanal. Chem. 2010, 397, 3457.
[47]
West, C.; Elfakir, C.; Lafosse, M. J. Chromatogr. A 2010, 1217, 3201.
[48]
Stavenhagen, K.; Kolarich, D.; Wuhrer, M. Chromatographia 2015, 78, 307.
[49]
Pabst, M.; Bondili, J. S.; Stadlmann, J.; Mach, L.; Altmann, F. Anal. Chem. 2007, 79, 5051.
[50]
Ashwood, C.; Lin, C. H.; Thaysen-Andersen, M.; Packer, N. H. J. Am. Soc. Mass Spectrom. 2018, 29, 1194.
[51]
Anugraham, M.; Jacob, F.; Nixdorf, S.; Everest-Dass, A. V.; Heinzelmann-Schwarz, V.; Packer, N. H. Mol. Cell Proteomics 2014, 13, 2213.
[52]
Kammeijer, G. S. M.; Jansen, B. C.; Kohler, I.; Heemskerk, A. A. M.; Mayboroda, O. A.; Hensbergen, P. J.; Schappler, J.; Wuhrer, M. Sci. Rep. 2017, 7, 3733.
[53]
Fuguet, E.; Ràfols, C.; Bosch, E.; Rosés, M. Chem. Biodivers. 2009, 6, 1822.
[54]
May, J. C.; McLean, J. A. Anal. Chem. 2015, 87, 1422.
[55]
Manz, C.; Pagel, K. Curr. Opin. Chem. Biol. 2018, 42, 16.
[56]
Hinneburg, H.; Hofmann, J.; Struwe, W. B.; Thader, A.; Altmann, F.; Varon Silva, D.; Seeberger, P. H.; Pagel, K.; Kolarich, D. Chem. Commun. 2016, 52, 4381.
[57]
Barroso, A.; Gimenez, E.; Konijnenberg, A.; Sancho, J.; Sanz-Nebot, V.; Sobott, F. J. Proteomics 2018, 173, 22.
[58]
Lane, C. S.; McManus, K.; Widdowson, P.; Flowers, S. A.; Powell, G.; Anderson, I.; Campbell, J. L. Anal. Chem. 2019, 91, 9916.
[59]
Alley, W. R., Jr.; Novotny, M. V. J. Proteome Res. 2010, 9, 3062.
[60]
Ciucanu, I.; Costello, C. E. J. Am. Chem. Soc. 2003, 125, 16213.
[61]
Powell, A. K.; Harvey, D. J. Rapid Commun. Mass Spectrom. 1996, 10, 1027.
[62]
Sekiya, S.; Wada, Y.; Tanaka, K. Anal. Chem. 2005, 77, 4962.
[63]
Toyoda, M.; Ito, H.; Matsuno, Y. K.; Narimatsu, H.; Kameyama, A. Anal. Chem. 2008, 80, 5211.
[64]
Shah, P.; Yang, S.; Sun, S. S.; Aiyetan, P.; Yarema, K. J.; Zhang, H. Anal. Chem. 2013, 85, 3606.
[65]
Liu, X.; Qiu, H. Y.; Lee, R. K.; Chen, W. X.; Li, J. J. Anal. Chem. 2010, 82, 8300.
[66]
Wheeler, S. F.; Domann, P.; Harvey, D. J. Rapid Commun. Mass Spectrom. 2009, 23, 303.
[67]
Reiding, K. R.; Blank, D.; Kuijper, D. M.; Deelder, A. M.; Wuhrer, M. Anal. Chem. 2014, 86, 5784.
[68]
Jin, W.; Wang, C.; Yang, M.; Wei, M.; Huang, L.; Wang, Z. Anal. Chem. 2019, 91, 10492.
[69]
Pongracz, T.; Wuhrer, M.; de Haan, N. Molecules 2019, 24, 3617.
[70]
Li, H.; Gao, W.; Feng, X.; Liu, B. F.; Liu, X. Anal. Chim. Acta 2016, 924, 77.
[71]
Holst, S.; Heijs, B.; de Haan, N.; van Zeijl, R. J.; Briaire-de Bruijn, I. H.; van Pelt, G. W.; Mehta, A. S.; Angel, P. M.; Mesker, W. E.; Tollenaar, R. A.; Drake, R. R.; Bovee, J. V.; McDonnell, L. A.; Wuhrer, M. Anal. Chem. 2016, 88, 5904.
[72]
Zhou, X. X.; Yang, S.; Yang, G. L.; Tan, Z. Q.; Guan, F. Chin. Chem. Lett. 2019, 30, 676.
[73]
Nishikaze, T.; Tsumoto, H.; Sekiya, S.; Iwamoto, S.; Miura, Y.; Tanaka, K. Anal. Chem. 2017, 89, 2353.
[74]
Suzuki, N.; Abe, T.; Natsuka, S. Anal. Biochem. 2019, 567, 117.
[75]
Furukawa, J. I.; Hanamatsu, H.; Nishikaze, T.; Manya, H.; Miura, N.; Yagi, H.; Yokota, I.; Akasaka-Manya, K.; Endo, T.; Kanagawa, M.; Iwasaki, N.; Tanaka, K. Anal. Chem. 2020, 92, 14383.
[76]
Peng, Y.; Wang, L.; Zhang, Y.; Bao, H.; Lu, H. Anal. Chem. 2019, 91, 15993.
Outlines

/