Article

Improving the Photomultiplication in Organic Photodetectors with Narrowband Response by Interfacial Engineering

  • Cheng Wang ,
  • Chi Zhang ,
  • Qi Chen ,
  • Liwei Chen
Expand
  • a i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
    b School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
    c School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
    d In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-04-27

  Online published: 2021-05-20

Supported by

Ministry of Science and Technology of China(2016YFA0200700); National Natural Science Foundation of China(21625304); National Natural Science Foundation of China(21875280); National Natural Science Foundation of China(22022205); National Natural Science Foundation of China(21991150); National Natural Science Foundation of China(21991153)

Abstract

Narrow-band response photodetectors are widely used in situations where specific light wavelengths need to be detected, such as communication, imaging, surveillance, etc. These detectors require not only the narrowest spectral response window, but also the highest external quantum efficiency (EQE) within the response window. Generally, the semiconductor photoactive layer in the photodetector will absorb the photons with energy greater than the band gap, and the spectral response window is usually wide, so it needs to combine with the filter of specific wavelength to achieve narrow band response. However, the introduction of filters, in addition to the increased cost, will inevitably lead to additional light reflection losses, which will significantly reduce EQE. When the film thickness of the heterojunction is up to μm, the narrow-band response near the band edge can be achieved without a filter. However, the problem brought by thick film is that the photocurrent also decreases, resulting in lower EQE (<30%) of the device. Although higher reverse bias increases the photocurrent and EQE, it also increases the collection probability of short-wave photogenerated carriers, thus damaging the narrow-band response. By greatly reducing the proportion of organic receptors and donors in the micron-size photoactive layer, the narrow-band response window of ca. 650 nm was achieved, and the EQE was up to ca. 53500% under –60 V reverse bias. This kind of organic photodetector achieving the photomultiplication mainly attributes to the trapped charges at the photoactive layer/electrode interface which will capture the photogenerated electrons (holes), and when the photogenerated electrons (holes) are collected, the electric neutral balance in the photoactive layer is broken. The trapped photogenerated electrons (holes) at the interface will cause the change of interface potential energy, which induces the interface band bending of the photoactive layer, and promotes the metal electrode to inject holes into the photoactive layer to maintain the neutral balance. Because the injection current is much higher than the photoelectric current, the superposition of the two can significantly increase EQE and even produce gain. However, the idea of obtaining higher EQE by further increasing the concentration of interfacial trapped electrons is difficult to be realized by increasing the proportion of receptors, which not only reduces EQE, but also increases the full width at half maximum (FWHM) of the response window and destroys the narrow-band response. In this work, the structure of ITO/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT)/poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-isomethyl butyrate (PCBM)/aluminum (Al) has been prepared. By optimizing the thermal anneal-ing time and PCBM concentration, the EQE at –60 V was successfully improved from 52946.8% to 68470.9%, which is the highest gain of narrow-band response organic photodetector so far, and the FWHM of ca. 28 nm remains unchanged. We used Nano-IR to confirm that EQE enhancement was attributed to thermal annealing induced diffusion of PCBM into P3HT, thus optimizing the electron trap concentration distribution at the interface between the active layer and the metal top electrode and enhancing carrier injection.

Cite this article

Cheng Wang , Chi Zhang , Qi Chen , Liwei Chen . Improving the Photomultiplication in Organic Photodetectors with Narrowband Response by Interfacial Engineering[J]. Acta Chimica Sinica, 2021 , 79(8) : 1030 -1036 . DOI: 10.6023/A21040181

References

[1]
Dong, H.; Zhu, H.; Meng, Q.; Gong, X.; Hu, W. Chem. Soc. Rev. 2012, 41, 1754.
[2]
Li, L.; Huang, Y.; Peng, J.; Cao, Y.; Peng, X. J. Mater. Chem. C 2014, 2, 1372.
[3]
Park, H.; Dan, Y.; Seo, K.; Yu, Y. J.; Duane, P. K.; Wober, M.; Crozier, K. B. Nano Lett. 2014, 14, 1804.
[4]
Zhao, Y.; Xie, L.; Ma, L.; He, J. Acta Chim. Sinica 2020, 78, 161. (in Chinese)
[4]
( 赵雅婧, 谢亮, 马兰超, 贺军辉, 化学学报, 2020, 78, 161.)
[5]
Wu, J.; Li, Y.; Shi, J.; Wu, H.; Luo, Y.; Li, D.; Meng, Q. Acta Phys.-Chim. Sin. 2021, 37, 2004041. (in Chinese)
[5]
( 吴炯桦, 李一明, 石将建, 吴会觉, 罗艳红, 李冬梅, 孟庆波, 物理化学学报, 2021, 37, 2004041.)
[6]
Zheng, B.; Huo, L. Sci. China Chem. 2020, 64, 358.
[7]
Lee, M. L.; Chi, P. -F.; Sheu, J. K. Appl. Phys. Lett. 2009, 94, 013512.
[8]
Shen, L.; Zhang, Y.; Bai, Y.; Zheng, X.; Wang, Q.; Huang, J. Nanoscale 2016, 8, 12990.
[9]
Xu, T.; Wu, Y. K.; Luo, X.; Guo, L. J. Nat. Commun. 2010, 1, 59.
[10]
Li, L.; Deng, Y.; Bao, C.; Fang, Y.; Wei, H.; Tang, S.; Zhang, F.; Huang, J. Adv. Opt. Mater. 2017, 5, 1700672.
[11]
Armin, A.; Jansen-van Vuuren, R. D.; Kopidakis, N.; Burn, P. L.; Meredith, P. Nat. Commun. 2015, 6, 6343.
[12]
Hiramoto, M.; Imahigashi, T.; Yokoyama, M. Appl. Phys. Lett. 1994, 64, 187.
[13]
Li, L.; Zhang, F.; Wang, J.; An, Q.; Sun, Q.; Wang, W.; Zhang, J.; Teng, F. Sci. Rep. 2015, 5, 9181.
[14]
Wang, W.; Zhang, F.; Bai, H.; Li, L.; Gao, M.; Zhang, M.; Zhan, X. Nanoscale 2016, 8, 5578.
[15]
Miao, J.; Zhang, F. Laser Photonics Rev. 2019, 13, 1800204.
[16]
Yang, K.; Wang, J.; Zhao, Z.; Zhou, Z.; Liu, M.; Zhang, J.; He, Z.; Zhang, F. ACS Appl. Mater. Interfaces 2021, 13, 21565.
[17]
Guo, F.; Yang, B.; Yuan, Y.; Xiao, Z.; Dong, Q.; Bi, Y.; Huang, J. Nat. Nanotechnol. 2012, 7, 798.
[18]
Wang, W.; Zhang, F.; Du, M.; Li, L.; Zhang, M.; Wang, K.; Wang, Y.; Hu, B.; Fang, Y.; Huang, J. Nano Lett. 2017, 17, 1995.
[19]
Tang, F.; Wang, C.; Chen, Q.; Lai, J.; Wang, W.; Zhang, F.; Chen, L. Appl. Phys. Lett. 2018, 113, 043303.
[20]
Katsume, T.; Hiramoto, M.; Yokoyama, M. Appl. Phys. Lett. 1996, 69, 3722.
[21]
Liu, M.; Wang, J.; Zhao, Z.; Yang, K.; Durand, P.; Ceugniet, F.; Ulrich, G.; Niu, L.; Ma, Y.; Leclerc, N.; Ma, X.; Shen, L.; Zhang, F. J. Phys. Chem. Lett. 2021, 12, 2937.
[22]
Shan, T.; Zhang, Y.; Wang, Y.; Xie, Z.; Wei, Q.; Xu, J.; Zhang, M.; Wang, C.; Bao, Q.; Wang, X.; Chen, C. C.; Huang, J.; Chen, Q.; Liu, F.; Chen, L.; Zhong, H. Nat. Commun. 2020, 11, 5585.
[23]
Chen, X.; Lai, J.; Shen, Y.; Chen, Q.; Chen, L. Adv. Mater. 2018, 30, 1802490.
[24]
Katzenmeyer, A. M.; Canivet, J.; Holland, G.; Farrusseng, D.; Centrone, A. Angew. Chem. Int. Ed. 2014, 53, 2852.
[25]
Xu, Q.; Chang, C.; Li, W.; Guo, B.; Guo, X.; Zhang, M. Acta Phys.-Chim. Sin. 2019, 35, 268.
[26]
Campoy-Quiles, M.; Ferenczi, T.; Agostinelli, T.; Etchegoin, P. G.; Kim, Y.; Anthopoulos, T. D.; Stavrinou, P. N.; Bradley, D. D.; Nelson, J. Nat. Mater. 2008, 7, 158.
[27]
Treat, N. D.; Brady, M. A.; Smith, G.; Toney, M. F.; Kramer, E. J.; Hawker, C. J.; Chabinyc, M. L. Adv. Energy Mater. 2011, 1, 82.
Outlines

/