Review

Recent Advances in Synthesis of Chiral 1,2-Dihydropyridines

  • Bo-Shuai Mu ,
  • Zhi-Hao Zhang ,
  • Wen-Biao Wu ,
  • Jin-Sheng Yu ,
  • Jian Zhou
Expand
  • a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China

Received date: 2021-04-02

  Online published: 2021-05-20

Supported by

National Natural Science Foundation of China(21971067); Shanghai Science and Technology Innovation Action Plan(20JC1416900)

Abstract

Chiral 1,2-dihydropyridines represent a class of versatile building blocks that can undergo diversifying reactions of conjugated dienes such as reduction or cycloaddition reaction, allowing facile synthesis of chiral piperidines and other nitrogen-containing heterocycles, prominent structural motifs in drugs and bioactive compounds. The efficient synthesis of chiral 1,2-dihydropyridines is highly desirable and beneficial for the drug discovery and development. The chiral pool strategy and chiral auxiliary based synthesis require the use of stoichiometric chiral reagents, so it is much sought-after to develop catalytic asymmetric methods to synthesize structurally diverse chiral 1,2-dihydropyridines. Since the pioneering catalytic enantioselective addition of nucleophiles to the C2 position of achiral activated pyridine derivatives in 2004, this strategy has been successfully employed for the catalytic synthesis of optically active 1,2-dihydropyridines bearing an aryl, alkyl or alkynyl group at the C2 position. Recently, tandem sequences was reported based on the asymmetric conversion of C=N bonds as an emerging strategy for the synthesis of multisubstituted chiral 1,2-dihydropyridines. This review summarizes the advances in this field, and discusses the challenges and synthetic opportunities for future development.

Cite this article

Bo-Shuai Mu , Zhi-Hao Zhang , Wen-Biao Wu , Jin-Sheng Yu , Jian Zhou . Recent Advances in Synthesis of Chiral 1,2-Dihydropyridines[J]. Acta Chimica Sinica, 2021 , 79(6) : 685 -693 . DOI: 10.6023/A21040131

References

[1]
(a) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845.
[1]
(b) Majumdar, K. C. Heterocycles in Natural Product Synthesis, Wiley-VCH, Weinheim, 2011.
[1]
(c) Alvarez-Builla, J.; Vaquero, J. J.; Barluenga, J. Modern Heterocyclic Chemistry, Wiley-VCH, Weinheim, 2011.
[1]
(d) Zhao, J.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235. (in Chinese)
[1]
(赵金钵, 张前, 化学学报, 2015, 73, 1235.)
[1]
(e) Wang, Y.; Liu, Y. Acta Chim. Sinica 2019, 77, 418. (in Chinese)
[1]
(王昱赟, 刘云云, 化学学报, 2019, 77, 418.)
[1]
(f) Zheng, Y.; Xie, Z.; Chen, K.; Xiang, H.; Yang, H. Chin. J. Org. Chem. 2021, 41, 1. (in Chinese)
[1]
(郑雨, 谢珍珍, 陈凯, 向皞月, 阳华, 有机化学, 2021, 41, 1.)
[1]
(g) Zhang, J.; Liu, P.; Sun, P. Chin. J. Org. Chem. 2021, 41, 185. (in Chinese)
[1]
(张杰, 刘平, 孙培培, 有机化学, 2021, 41, 185.)
[2]
(a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
[2]
(b) Zhang, B.; Zhou, Q.; Chen, R.; Jiang, H. Chin. J. Org. Chem. 2012, 32, 1653. (in Chinese)
[2]
(张斌, 周其忠, 陈仁尔, 蒋华江, 有机化学, 2012, 32, 1653.)
[3]
(a) Shankaraiah, N.; Pilli, R. A.; Santos, L. S. Tetrahedron Lett. 2008, 49, 5098.
[3]
(b) Xiao, D.; Lavey, B. J.; Palani, A.; Wang, C.; Aslanian, R. G.; Kozlowski, J. A.; Shih, N.-Y.; McPhail, A. T.; Randolph, G. P.; Lachowicz, J. E.; Duffy, R. A. Tetrahedron Lett. 2005, 46, 7653.
[3]
(c) Kato, A.; Kato, N.; Kano, E.; Adachi, I.; Ikeda, K.; Yu, L.; Okamoto, T.; Banba, Y.; Ouchi, H.; Takahata, H.; Asano, N. J. Med. Chem. 2005, 48, 2036.
[3]
(d) Janssen, P. A. J. Br. J. Anaesth. 1962, 34, 260.
[4]
(a) Sperber, N.; Papa, D. J. Am. Chem. Soc. 1949, 71, 887.
[4]
(b) Leader, H.; Wolfe, A. D.; Chiang, P. K.; Gordon, R. K. J. Med. Chem. 2002, 45, 902.
[4]
(c) Sperber, N.; Papa, D. J. Am. Chem. Soc. 1949, 71, 887.
[4]
(d) Prieri, M.; Frita, R.; Probst, N.; Sournia-Saquet, A.; Bourotte, M.; Deprez, B.; Baulard, A. R.; Willand, N. Eur. J. Med. Chem. 2018, 159, 35.
[5]
(a) Allais, C.; Grassot, J.-M.; Rodriguez, J.; Constantieux, T. Chem. Rev. 2014, 114, 10829.
[5]
(b) Henry, G. D. Tetrahedron 2004, 60, 6043.
[6]
Selected reviews: (a) Eisner, U.; Kuthan, J. Chem. Rev. 1972, 72, 1.
[6]
(b) Stout, D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223.
[6]
(c) Nebe, M. M.; Opatz, T. Adv. Heterocycl. Chem. 2017, 122, 191.
[7]
(a) Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. Chem. Rev. 2012, 112, 2642.
[7]
(b) Silva, E. M. P.; Varandas, P. A. M. M.; Silva, A. M. S. Synthesis 2013, 45, 3053.
[8]
(a) Yedoyan, J.; Wurzer, N.; Klimczak, U.; Ertl, T.; Reiser, O. Angew. Chem. Int. Ed. 2019, 58, 3594.
[8]
(b) Trost, B. M.; Biannic, B. Org. Lett. 2015, 17, 1433.
[9]
(a) Silva, E. M. P.; Rocha, D. H. A.; Silva, A. M. S. Synthesis 2018, 50, 1773.
[9]
(b) Menichetti, A.; Berti, F.; Pineschi, M. Molecules 2020, 25, 563.
[10]
Khan, M. O. F.; Levi, M. S.; Clark, C. R.; Ablordeppey, S. Y.; Law, S.-L.; Wilson, N. H.; Borne, R. F. Stud. Nat. Prod. Chem. 2008, 34, 753.
[11]
Shono, T.; Matsumura, Y.; Onomura, O.; Yamada, Y. Tetrahedron Lett. 1987, 28, 4073.
[12]
Monguchi, D.; Majumdar, S.; Kawabata, T. Heterocycles 2006, 68, 2571.
[13]
Wu, P.; Wang, Q.-F.; Cai, X.-M.; Yan, C.-G. Chin. J. Org. Chem. 2008, 28, 1899. (in Chinese)
[13]
(吴萍, 王琦芳, 蔡习美, 颜朝国, 有机化学, 2008, 28, 1899.)
[14]
Comins, D. L.; Hong, H.; Salvador, J. M. J. Org. Chem. 1991, 56, 7197.
[15]
Charette, A. B.; Grenon, M.; Lemire, A.; Pourashraf, M.; Martel, J. J. Am. Chem. Soc. 2001, 123, 11829.
[16]
Lemire, A.; Grenon, M.; Pourashraf, M.; Charette, A. B. Org. Lett. 2004, 6, 3517.
[17]
Ichikawa, E.; Suzuki, M.; Yabu, K.; Albert, M.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 11808.
[18]
Takamura, M.; Funabashi, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 6327.
[19]
Takamura, M.; Funabashi, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 6801.
[20]
Sun, Z.; Yu, S.; Ding, Z.; Ma, D. J. Am. Chem. Soc. 2007, 129, 9300.
[21]
Pappoppula, M.; Cardoso, F. S. P.; Garrett, B. O.; Aponick, A. Angew. Chem. Int. Ed. 2015, 54, 15202.
[22]
Nadeau, C.; Aly, S.; Belyk, K. J. Am. Chem. Soc. 2011, 133, 2878.
[23]
Robinson, D. J.; Spurlin, S. P.; Gorden, J. D.; Karimov, R. R. ACS Catal. 2020, 10, 51.
[24]
Wang, Y.; Liu, Y.; Zhang, D.; Wei, H.; Shi, M.; Wang, F. Angew. Chem. Int. Ed. 2016, 55, 3776.
[25]
Yamaoka, Y.; Miyabe, H.; Takemoto, Y. J. Am. Chem. Soc. 2007, 129, 6686.
[26]
(a) Fernández-Ibá?ez, M.á.; Maciá, B.; Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Angew. Chem. Int. Ed. 2009, 48, 9339.
[26]
(b) Al-awar, R. S.; Joseph, S. P.; Comins, D. L. J. Org. Chem. 1993, 58, 7732.
[27]
Chau, S. T.; Lutz, J. P.; Wu, K.; Doyle, A. G. Angew. Chem. Int. Ed. 2013, 52, 9153.
[28]
Lutz, J. P.; Chau, S. T.; Doyle, A. G. Chem. Sci. 2016, 7, 4105.
[29]
Manche?o, O. G.; Asmus, S.; Zurro, M.; Fischer, T. Angew. Chem. Int. Ed. 2015, 54, 8823.
[30]
Zhang, D.; Lin, L.; Yang, J.; Liu, X.; Feng, X. Angew. Chem. Int. Ed. 2018, 57, 12323.
[31]
Zhang, D.; Su, Z.; He, Q.; Wu, Z.; Zhou, Y.; Pan, C.; Liu, X.; Feng, X. J. Am. Chem. Soc. 2020, 142, 15975.
[32]
Mu, B.-S.; Cui, X.-Y.; Zeng, X.-P.; Yu, J.-S.; Zhou, J. Nat. Commun. 2021, 12, 2219.
[33]
The development of sustainable tandem reactions by internally reusing waste to promote the next step offers a new opportunity to develop new chemistry aiming at maximizing the atom utilization of a process. The current research showed that waste of previous step (including by-product, excess reagent and residual catalyst) could be internally reused as additive, catalyst or reagent to promote the next step. Advances of "waste as additive" tandem reactions: (a) Kinoshita, T.; Okada, S.; Park, S.-R.; Matsunaga, S.; Shibasaki, M. Angew. Chem. Int. Ed. 2003, 42, 4680.
[33]
(b) Yu, T.-Y.; Wei, H.; Luo, Y.-C.; Wang, Y.; Wang, Z.-Y.; Xu, P.-F. J. Org. Chem. 2016, 81, 2730.
[33]
(c) Gao, X.-T.; Gan, C.-C.; Liu, S.-Y.; Zhou, F.; Wu, H.-H.; Zhou, J. ACS Catal. 2017, 7, 8588.
[33]
Advances of "waste as catalyst" tandem reactions: (d) Nishimoto, Y.; Yasuda, M.; Baba, A. Org. Lett. 2007, 9, 4931.
[33]
(e) Alaimo, P. J.; O’Brien, R.; Johnson, A. W.; Slauson, S. R.; O’Brien, J. M.; Tyson, E. L.; Marshall, A.-L.; Ottinger, C. E.; Chacon, J. G.; Wallace, L.; Paulino, C. Y.; Connell, S. Org. Lett. 2008, 10, 5111.
[33]
(f) Li, H.-H.; Dong, D.-J.; Jin, Y.-H.; Tian, S.-K. J. Org. Chem. 2009, 74, 9501.
[33]
(g) Yang, B.-L.; Weng, Z.-T.; Yang, S.-J.; Tian, S.-K. Chem. Eur. J. 2010, 16, 718.
[33]
(h) Cao, J.-J.; Zhou, F.; Zhou, J. Angew. Chem. Int. Ed. 2010, 49, 4976.
[33]
(i) Gao, M.; Yang, Y.; Wu, Y.-D.; Deng, C.; Shu, W.-M.; Zhang, D.-X.; Cao, L.-P.; She, N.-F.; Wu, A.-X. Org. Lett. 2010, 12, 4026.
[33]
(j) Lu, J.; Toy, P. H. Chem. Asian J. 2011, 6, 2251.
[33]
(k) Teng, Y.; Lu, J.; Toy, P. H. Chem. Asian J. 2012, 7, 351.
[33]
(l) Chen, L.; Shi, T.-D.; Zhou, J. Chem. Asian J. 2013, 8, 556.
[33]
(m) Portalier, F.; Bourdreux, F.; Marrot, J.; Moreau, X.; Coeffard, V.; Greck, C. Org. Lett. 2013, 15, 5642.
[33]
(n) Chen, L.; Du, Y.; Zeng, X.-P.; Shi, T.-D.; Zhou, F.; Zhou, J. Org. Lett. 2015, 17, 1557.
[33]
(o) Zeng, X.-P.; Cao, Z.-Y.; Wang, X.; Chen, L.; Zhou, F.; Zhu, F.; Wang, C.-H.; Zhou, J. J. Am. Chem. Soc. 2016, 138, 416.
[33]
Advances of "waste as reagent" tandem reactions: (p) Zhu, F.; Xu, P.-W.; Zhou, F.; Wang, C.-H.; Zhou, J. Org. Lett. 2015, 17, 972.
[33]
(q) Liu, Y.-L.; Yin, X.-P.; Zhou, J. Chin. J. Chem. 2018, 36, 321.
[33]
(r) Li, D.; Tan, Y.; Peng, L.; Li, S.; Zhang, N.; Liu, Y.; Yan, H. Org. Lett. 2018, 20, 4959.
[33]
(s) Guo, Y.; Meng, C.; Liu, X.; Li, C.; Xia, A.; Xu, Z.; Xu, D. Org. Lett. 2018, 20, 913.
Outlines

/