Review

Research Progress of Actinide-Ligand Multiple Bonding Supported by Tripodal Ligands

  • Bin Li ,
  • Jipan Yu ,
  • Kang Liu ,
  • Qunyan Wu ,
  • Qi Liu ,
  • Weiqun Shi
Expand
  • a College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
    b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-04-09

  Online published: 2021-05-25

Supported by

National Natural Science Foundation of China(21925603); National Natural Science Foundation of China(21806167)

Abstract

Nonaqueous actinide chemistry is a challenging frontier field, which has made rapid progress in molecular magnetism, multiple bonds and small molecular activation in recent years. Chemical bond is an important basic concept in chemical science, and metal-ligand multiple bond becomes important research content in this field. The formation of multiple bonds is closely related to the electronic configuration of actinides. The s and p-orbitals of actinides contract toward the nucleus and thus produce lower energy level, which increase the shielding effect on nuclear charge. This leads to indirect relativistic effects where the d and f-orbitals experience expansion and destabilization. This destabilization decreases the binding energy of 5f electrons and make them more easily to leave, giving rise to a large range of available oxidation states. Due to higher principle quantum number and relativistic effects, the 5f orbitals of actinides have a much greater radial extension, and the electronic effect of 5f orbitals has a greater influence. At present, the research of actinide-ligand multiple bonds has become one of the most remarkable fields in actinide chemistry and received extensive attention. It is a great challenge to synthesize and separate compounds with actinide-ligand multiple bonds due to their strong radioactivity and toxicity and complex electronic structures. To study actinide-ligand multiple bonds, especially double- and triple-bonded complexes, will assist us to understand their electronic structure, reactivity and physical properties such as electrical conductivity, magnetism, and photochemistry. Tripodal ligands with pocket topology have been widely used in the research of actinide-ligand multiple bonds. This gives a window into exploring the diverse chemical behavior of actinide multiple bonds and observing how actinides can utilize its 5f electrons to exhibit interesting and novel chemistry. The research progress of actinide-ligand multiple bonds based on tripodal ligand is summarized in this review, and the prospect of this field is prognosticated.

Cite this article

Bin Li , Jipan Yu , Kang Liu , Qunyan Wu , Qi Liu , Weiqun Shi . Research Progress of Actinide-Ligand Multiple Bonding Supported by Tripodal Ligands[J]. Acta Chimica Sinica, 2021 , 79(8) : 986 -998 . DOI: 10.6023/A21040140

References

[1]
Fox, A. R.; Bart, S. C.; Meyer, K.; Cummins, C. C. Nature 2008, 455, 341.
[2]
Gardner, B. M.; Liddle, S. T. Chem. Commun. 2015, 51, 10589.
[3]
Lu, E.; Boronski, J. T.; Gregson, M.; Wooles, A. J.; Liddle, S. T. Angew. Chem. Int. Ed. 2018, 57, 5506.
[4]
Gregson, M.; Lu, E.; Mills, D. P.; Tuna, F.; McInnes, E. J.L.; Hennig, C.; Scheinost, A. C.; McMaster, J.; Lewis, W.; Blake, A. J.; Kerridge, A.; Liddle, S. T. Nat. Commun. 2017, 8, 14137.
[5]
Lu, E.; Tuna, F.; Lewis, W.; Kaltsoyannis, N.; Liddle, S. T. Chem.-Eur. J. 2016, 22, 11554.
[6]
King, D. M.; Tuna, F.; McInnes, E. J.L.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Science 2012, 337, 717.
[7]
Gardner, B. M.; Cleaves, P. A.; Kefalidis, C. E.; Fang, J.; Maron, L.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. Sci. 2014, 5, 2489.
[8]
King, D. M.; Tuna, F.; McInnes, E. J.L.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Nat. Chem. 2013, 5, 482.
[9]
Thomson, R. K.; Cantat, T.; Scott, B. L.; Morris, D. E.; Batista, E. R.; Kiplinger, J. L. Nat. Chem. 2010, 2, 723.
[10]
King, D. M.; Tuna, F.; McMaster, J.; Lewis, W.; Blake, A. J.; McInnes, E. J.L.; Liddle, S. T. Angew. Chem. Int. Ed. 2013, 52, 4921.
[11]
Cleaves, P. A.; King, D. M.; Kefalidis, C. E.; Maron, L.; Tuna, F.; McInnes, E. J.L.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Angew. Chem. Int. Ed. 2014, 53, 10412.
[12]
King, D. M.; McMaster, J.; Tuna, F.; McInnes, E. J.L.; Lewis, W.; Blake, A. J.; Liddle, S. T. J. Am. Chem. Soc. 2014, 136, 5619.
[13]
King, D. M.; Cleaves, P. A.; Wooles, A. J.; Gardner, B. M.; Chilton, N. F.; Tuna, F.; Lewis, W.; McInnes, E. J.L.; Liddle, S. T. Nat. Commun. 2016, 7, 13773.
[14]
Cleaves, P. A.; Kefalidis, C. E.; Gardner, B. M.; Tuna, F.; McInnes, E. J.L.; Lewis, W.; Maron, L.; Liddle, S. T. Chem.-Eur. J. 2017, 23, 2950.
[15]
Chatelain, L.; Louyriac, E.; Douair, I.; Lu, E.; Tuna, F.; Wooles, A. J.; Gardner, B. M.; Maron, L.; Liddle, S. T. Nat. Commun. 2020, 11, 337.
[16]
Du, J.; Alvarez-Lamsfus, C.; Wildman, E. P.; Wooles, A. J.; Maron, L.; Liddle, S. T. Nat. Commun. 2019, 10, 4203.
[17]
Gardner, B. M.; Balázs, G.; Scheer, M.; Tuna, F.; McInnes, E. J.L.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Angew. Chem. Int. Ed. 2014, 53, 4484.
[18]
Rookes, T. M.; Gardner, B. M.; Balázs, G.; Gregson, M.; Tuna, F.; Wooles, A. J.; Scheer, M.; Liddle, S. T. Angew. Chem. Int. Ed. 2017, 56, 10495.
[19]
Gardner, B. M.; Balázs, G.; Scheer, M.; Tuna, F.; McInnes, E. J.L.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Nat. Chem. 2015, 7, 582.
[20]
Du, J.; King, D. M.; Chatelain, L.; Lu, E.; Tuna, F.; McInnes, E. J.L.; Wooles, A. J.; Maron, L.; Liddle, S. T. Chem. Sci. 2019, 10, 3738.
[21]
Seed, J. A.; Sharpe, H. R.; Futcher, H. J.; Wooles, A. J.; Liddle, S. T. Angew. Chem. Int. Ed. 2020, 59, 15870.
[22]
Wildman, E. P.; Balázs, G.; Wooles, A. J.; Scheer, M.; Liddle, S. T. Nat. Commun. 2016, 7, 12884.
[23]
Wildman, E. P.; Balázs, G.; Wooles, A. J.; Scheer, M.; Liddle, S. T. Nat. Commun. 2017, 8, 14769.
[24]
Behrle, A. C.; Walensky, J. R. Dalton Trans. 2016, 45, 10042.
[25]
Scherer, O. J.; Schulze, J.; Wolmershäuser, G. J. Organomet. Chem. 1994, 484, c5.
[26]
Castro-Rodríguez, I.; Nakai, H.; Meyer, K. Angew. Chem. Int. Ed. 2006, 45, 2389.
[27]
Castro-Rodriguez, I.; Olsen, K.; Gantzel, P.; Meyer, K. J. Am. Chem. Soc. 2003, 125, 4565.
[28]
Bart, S. C.; Anthon, C.; Heinemann, F. W.; Bill, E.; Edelstein, N. M.; Meyer, K. J. Am. Chem. Soc. 2008, 130, 12536.
[29]
Kosog, B.; La Pierre, H. S.; Heinemann, F. W.; Liddle, S. T.; Meyer, K. J. Am. Chem. Soc. 2012, 134, 5284.
[30]
Schmidt, A. -C.; Heinemann, F. W.; Lukens, W. W.; Meyer, K. J. Am. Chem. Soc. 2014, 136, 11980.
[31]
Schmidt, A. -C.; Heinemann, F. W.; Maron, L.; Meyer, K. Inorg. Chem. 2014, 53, 13142.
[32]
Rosenzweig, M. W.; Scheurer, A.; Lamsfus, C. A.; Heinemann, F. W.; Maron, L.; Andrez, J.; Mazzanti, M.; Meyer, K. Chem. Sci. 2016, 7, 5857.
[33]
Rosenzweig, M. W.; Hümmer, J.; Scheurer, A.; Lamsfus, C. A.; Heinemann, F. W.; Maron, L.; Mazzanti, M.; Meyer, K. Dalton Trans. 2019, 48, 10853.
[34]
Halter, D. P.; Heinemann, F. W.; Maron, L.; Meyer, K. Nat. Chem. 2017, 10, 259.
[35]
Halter, D. P.; Heinemann, F. W.; Bachmann, J.; Meyer, K. Nature 2016, 530, 317.
[36]
Bogart, J. A.; Lippincott, C. A.; Carroll, P. J.; Schelter, E. J. Angew. Chem. Int. Ed. 2015, 54, 8222.
[37]
Fang, H.; Cole, B. E.; Qiao, Y.; Bogart, J. A.; Cheisson, T.; Manor, B. C.; Carroll, P. J.; Schelter, E. J. Angew. Chem. Int. Ed. 2017, 56, 13450.
[38]
Solola, L. A.; Zabula, A. V.; Dorfner, W. L.; Manor, B. C.; Carroll, P. J.; Schelter, E. J. J. Am. Chem. Soc. 2016, 138, 6928.
[39]
Cheisson, T.; Kersey, K. D.; Mahieu, N.; McSkimming, A.; Gau, M. R.; Carroll, P. J.; Schelter, E. J. J. Am. Chem. Soc. 2019, 141, 9185.
[40]
Wu, Q. -Y.; Wang, C. -Z.; Lan, J. -H.; Chai, Z. -F.; Shi, W. -Q. Dalton Trans. 2020, 49, 15895.
[41]
Liu, K.; Yu, J. -P.; Wu, Q. -Y.; Tao, X. -B.; Kong, X. -H.; Mei, L.; Hu, K. -Q.; Yuan, L. -Y.; Chai, Z. -F.; Shi, W. -Q. Organometallics 2020, 39, 4069.
[42]
Wu, Q. -Y.; Lan, J. -H.; Wang, C. -Z.; Zhao, Y. -L.; Chai, Z. -F.; Shi, W. -Q. J. Phys. Chem. A 2015, 119, 922.
[43]
Wu, Q. -Y.; Wang, C. -Z.; Lan, J. -H.; Xiao, C. -L.; Wang, X. -K.; Zhao, Y. -L.; Chai, Z. -F.; Shi, W. -Q. Inorg. Chem. 2014, 53, 9607.
Outlines

/