Review

Metal-organic Frameworks-based Composites and Their Photothermal Applications

  • Caixia Guo ,
  • Xiaojie Ma ,
  • Bo Wang
Expand
  • School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2021-04-22

  Online published: 2021-05-26

Supported by

National Natural Science Foundation of China(21625102); National Natural Science Foundation of China(21801017); National Natural Science Foundation of China(21490570); National Natural Science Foundation of China(21674012); Beijing Municipal Science and Technology Project(Z181100004418001); Beijing Institute of Technology Research Fund Program

Abstract

Metal-organic frameworks (MOFs) are a growing class of organic-inorganic hybrid crystalline porous materials, showing high levels of structural and chemical diversity. They have a wide range of applications in gas adsorption and separation, catalysis, sensing, biomedicine and other fields. Due to their intriguing properties such as high porosity, adjustable pore size and tunable surface functionality, MOFs have been gaining popularity as a promising platform for integration of various organic/inorganic functional nanomaterials in a predictable and controllable way. The combination of MOFs and functional components offers a possibility to generate synergetic effect between functional units, thus leading to the creation of multifunctional materials with performance superior to each individual components. In this review, we summarized recent research progress on controllable synthesis of MOF composites. There are basically two strategies, including “bottle in ship” and “ship in bottle”. Following that, preparation methods including solution infiltration, deposition, solid grinding and template synthesis, were discussed in detail. Light-to-heat conversion materials have always been a research focus due to their important applications in solar powered water evaporation and near-infrared (NIR) excited bioimaging and noninvasive cancer treatment. MOFs can not only show intrinsic structure-dependent photoresponse activity, but also serve as porous supports to facilitate the stabilization and spatial distribution of photothermal nanoparticles. Recently, MOF composites with photothermal effects have aroused increasing attention in the fields like tumor diagnosis and treatment, bacterial disinfection and synergistic catalysis. This review mainly focused on the recent research progress on photothermal MOF composites. We discussed the integration of functional MOFs with various inorganic/organic photothermal nanoparticles (e.g. Au, Pt, porphyrin, polydopamine etc.), along with the structure and photothermal application of the composites. Research about MOFs based light-to-heat conversion is at the stage of rapid development. Finally, we also give a prospect to the future development of multifunctional and photothermal MOF composites.

Cite this article

Caixia Guo , Xiaojie Ma , Bo Wang . Metal-organic Frameworks-based Composites and Their Photothermal Applications[J]. Acta Chimica Sinica, 2021 , 79(8) : 967 -985 . DOI: 10.6023/A21040173

References

[1]
Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O'Keeffe, M.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257.
[2]
Xu, W.; Tu, B.; Liu, Q.; Shu, Y.; Liang, C. -C.; Diercks, C. S.; Yaghi, O. M.; Zhang, Y. -B.; Deng, H.; Li, Q. Nat. Rev. Mater. 2020, 5, 764.
[3]
Ma, R.; Jiang, H.; Wang, C.; Zhao, C.; Deng, H. Chem. Commun. (Camb) 2020, 56, 2715.
[4]
Wu, Y.; Huang, Z.; Jiang, H.; Wang, C.; Zhou, Y.; Shen, W.; Xu, H.; Deng, H. ACS Appl. Mater. Interfaces 2019, 11, 44573.
[5]
Jiang, H.; Jin, S.; Wang, C.; Ma, R.; Song, Y.; Gao, M.; Liu, X.; Shen, A.; Cheng, G. J.; Deng, H. J. Am. Chem. Soc. 2019, 141, 5481.
[6]
Jiang, H.; Tong, L.; Liu, H.; Xu, J.; Jin, S.; Wang, C.; Hu, X.; Ye, L.; Deng, H.; Cheng, G. J. Matter 2020, 2, 1535.
[7]
Farha, O. K.; Yazaydin, A. O.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. Nat. Chem. 2010, 2, 944.
[8]
Inukai, M.; Tamura, M.; Horike, S.; Higuchi, M.; Kitagawa, S.; Nakamura, K. Angew. Chem. Int. Ed. 2018, 57, 8687.
[9]
Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127.
[10]
Guo, Z.; Zhang, Y.; Feng, X. Acta Chim. Sinica 2020, 78, 397. (in Chinese)
[10]
( 郭振彬, 张媛媛, 冯霄, 化学学报, 2020, 78, 397.)
[11]
Zhang, J.; Li, P.; Zhang, X.; Ma, X.; Wang, B. Acta Chim. Sinica 2020, 78, 597. (in Chinese)
[11]
( 张晋维, 李平, 张馨凝, 马小杰, 王博, 化学学报, 2020, 78, 597.)
[12]
Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.; Zhao, H.; Tang, Z. Nature 2016, 539, 76.
[13]
Huang, N.; Drake, H.; Li, J.; Pang, J.; Wang, Y.; Yuan, S.; Wang, Q.; Cai, P.; Qin, J.; Zhou, H. C. Angew. Chem. Int. Ed. 2018, 57, 8916.
[14]
Xin, Z.; Wang, Y. -R.; Chen, Y.; Li, W. -L.; Dong, L. -Z.; Lan, Y. -Q. Nano Energy 2020, 67, 104233.
[15]
Gao, J.; Huang, Q.; Wu, Y.; Lan, Y. -Q.; Chen, B. Adv. Energy Sustainability Res. 2021, 2, 2100033.
[16]
Li, X.; Wang, J.; Xue, F.; Wu, Y.; Xu, H.; Yi, T.; Li, Q. Angew. Chem. Int. Ed. 2021, 60, 2534.
[17]
Tao, W.; Zhu, X.; Yu, X.; Zeng, X.; Xiao, Q.; Zhang, X.; Ji, X.; Wang, X.; Shi, J.; Zhang, H.; Mei, L. Adv. Mater. 2017, 29, 1603276.
[18]
Yang, T.; Cui, Y.; Chen, H.; Li, W. Acta Chim. Sinica 2017, 75, 339. (in Chinese)
[18]
( 杨涛, 崔亚男, 陈怀银, 李伟华, 化学学报, 2017, 75, 339.)
[19]
Wang, B.; Wang, P.; Xie, L. H.; Lin, R. B.; Lv, J.; Li, J. R.; Chen, B. Nat. Commun. 2019, 10, 3861.
[20]
Luo, Y. H.; Xie, A. D.; Hu, M. G.; Wu, J.; Zhang, D. E.; Lan, Y. Q. Inorg. Chem. 2021, 60, 167.
[21]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232.
[22]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Nat. Mater. 2010, 9, 172.
[23]
Zhang, Y.; Wang, F. M.; Ju, E. G.; Liu, Z.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Adv. Funct. Mater. 2016, 26, 6454.
[24]
Yao, A.; Jiao, X.; Chen, D.; Li, C. ACS Appl. Mater. Interfaces 2019, 11, 7927.
[25]
Song, L.; Zhao, T.; Yang, D.; Wang, X.; Hao, X.; Liu, Y.; Zhang, S.; Yu, Z. -Z. J. Hazard. Mater. 2020, 393, 122332.
[26]
Yao, A.; Jiao, X.; Chen, D.; Li, C. ACS Appl. Mater. Interfaces 2020, 12, 18437.
[27]
Chen, Y. -J.; Chen, Y.; Miao, C.; Wang, Y. -R.; Gao, G. -K.; Yang, R. -X.; Zhu, H. -J.; Wang, J. -H.; Li, S. -L.; Lan, Y. -Q. J. Mater. Chem. A 2020, 8, 14644.
[28]
Wang, P. L.; Xie, L. H.; Joseph, E. A.; Li, J. R.; Su, X. O.; Zhou, H. C. Chem. Rev. 2019, 119, 10638.
[29]
Zeng, J.; Wang, X.; Zhang, X.; Zhuo, R. Acta Chim. Sinica 2019, 77, 1156. (in Chinese)
[29]
曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.).
[30]
Qi, Y.; Ren, S.; Che, Y.; Ye, J.; Ning, G. Acta Chimica Sinica 2020, 78, 613. (in Chinese)
[30]
齐野, 任先颂, 车颖, 叶俊伟, 宁桂玲, 化学学报, 2020, 78, 613.).
[31]
Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Van Tendeloo, G.; Fischer, R. A. Eur. J. Org. Chem. 2010, 3701.
[32]
Yang, D.; Yang, G.; Gai, S.; He, F.; An, G.; Dai, Y.; Lv, R.; Yang, P. Nanoscale 2015, 7, 19568.
[33]
Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Adv. Mater. 2011, 23, 3542.
[34]
Yang, S. J.; Choi, J. Y.; Chae, H. K.; Cho, J. H.; Nahm, K. S.; Park, C. R. Chem. Mater. 2009, 21, 1893.
[35]
Petit, C.; Bandosz, T. J. Adv. Funct. Mater. 2011, 21, 2108.
[36]
Prasanth, K. P.; Rallapalli, P.; Raj, M. C.; Bajaj, H. C.; Jasra, R. V. Int. J. Hydrog. Energy 2011, 36, 7594.
[37]
Distefano, G.; Suzuki, H.; Tsujimoto, M.; Isoda, S.; Bracco, S.; Comotti, A.; Sozzani, P.; Uemura, T.; Kitagawa, S. Nat. Chem. 2013, 5, 335.
[38]
Zhu, Y. -D.; Chen, S. -P.; Zhao, H.; Yang, Y.; Chen, X. -Q.; Sun, J.; Fan, H. -S.; Zhang, X. -D. ACS Appl. Mater. Interfaces 2016, 8, 34209.
[39]
Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; DuChene, J. S.; Zhang, H.; Zhang, Q.; Chen, X.; Ma, J.; Loo, S. C.; Wei, W. D.; Yang, Y.; Hupp, J. T.; Huo, F. Nat. Chem. 2012, 4, 310.
[40]
Zhu, Q. L.; Xu, Q. Chem. Soc. Rev. 2014, 43, 5468.
[41]
Sabo, M.; Henschel, A.; Fröde, H.; Klemm, E.; Kaskel, S. J. Mater. Chem. 2007, 17, 3827.
[42]
Khajavi, H.; Stil, H. A.; Kuipers, H. P.C.E.; Gascon, J.; Kapteijn, F. ACS Catal. 2013, 3, 2617.
[43]
Guo, Z.; Xiao, C.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X.; Tesfagaber, D.; Thiel, A.; Huang, W. ACS Catal. 2014, 4, 1340.
[44]
Volosskiy, B.; Niwa, K.; Chen, Y.; Zhao, Z.; Weiss, N. O.; Zhong, X.; Ding, M.; Lee, C.; Huang, Y.; Duan, X. ACS Nano 2015, 9, 3044.
[45]
Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 1304.
[46]
Cao, N.; Yang, L.; Dai, H.; Liu, T.; Su, J.; Wu, X.; Luo, W.; Cheng, G. Inorg. Chem. 2014, 53, 10122.
[47]
Shang, N. -Z.; Feng, C.; Gao, S. -T.; Wang, C. Int. J. Hydrog. Energy 2016, 41, 944.
[48]
Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Ferey, G. Angew. Chem. Int. Ed. 2008, 47, 4144.
[49]
Jiang, Z.; Xu, X.; Ma, Y.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J.; Zhou, Y.; Terasaki, O.; Peng, T.; Zan, L.; Deng, H. Nature 2020, 586, 549.
[50]
Lin, X. Y.; Li, Y. H.; Qi, M. Y.; Tang, Z. R.; Jiang, H. L.; Xu, Y. J. Nanoscale Horiz. 2020, 5, 714.
[51]
Yadav, M.; Xu, Q. Chem. Commun. (Camb) 2013, 49, 3327.
[52]
Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Ronnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. J. Am. Chem. Soc. 2012, 134, 13926.
[53]
Li, Y. X.; Ji, Y. N.; Jin, M. M.; Qi, S. C.; Li, S. S.; Xue, D. M.; Yue, M. B.; Liu, X. Q.; Sun, L. B. ACS Appl. Mater. Interfaces 2018, 10, 40044.
[54]
Zhu, Q. L.; Li, J.; Xu, Q. J. Am. Chem. Soc. 2013, 135, 10210.
[55]
Wang, D.; Pan, Y.; Xu, L.; Li, Z. J. Catal. 2018, 361, 248.
[56]
Wang, D.; Li, Z. J. Catal. 2016, 342, 151.
[57]
Ding, D.; Jiang, Z.; Jin, J.; Li, J.; Ji, D.; Zhang, Y.; Zan, L. J. Catal. 2019, 375, 21.
[58]
Meng, X. -B.; Sheng, J. -L.; Tang, H. -L.; Sun, X. -J.; Dong, H.; Zhang, F. -M. Appl. Catal. B 2019, 244, 340.
[59]
Hermes, S.; Schroter, M. K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A. Angew. Chem. Int. Ed. 2005, 44, 6237.
[60]
Corma, A.; Garcia, H.; Llabres i Xamena, F. X. Chem. Rev. 2010, 110, 4606.
[61]
Luz, I.; Rösler, C.; Epp, K.; Llabrés i Xamena, F. X.; Fischer, R. A. Eur. J. Org. Chem. 2015, 2015, 3904.
[62]
Proch, S.; Herrmannsdorfer, J.; Kempe, R.; Kern, C.; Jess, A.; Seyfarth, L.; Senker, J. Chemistry 2008, 14, 8204.
[63]
Li, P. Z.; Aranishi, K.; Xu, Q. Chem. Commun. (Camb) 2012, 48, 3173.
[64]
Lim, D. W.; Yoon, J. W.; Ryu, K. Y.; Suh, M. P. Angew. Chem. Int. Ed. 2012, 51, 9814.
[65]
Hermannsdorfer, J.; Kempe, R. Chemistry 2011, 17, 8071.
[66]
Müller, M.; Lebedev, O. I.; Fischer, R. A. J. Mater. Chem. 2008, 18, 5274.
[67]
George, S. M. Chem. Rev. 2010, 110, 111.
[68]
Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. J. Am. Chem. Soc. 2013, 135, 10294.
[69]
Elam, J. W.; Routkevitch, D.; Mardilovich, P. P.; George, S. M. Chem. Mater. 2003, 15, 3507.
[70]
Morris, W.; Volosskiy, B.; Demir, S.; Gandara, F.; McGrier, P. L.; Furukawa, H.; Cascio, D.; Stoddart, J. F.; Yaghi, O. M. Inorg. Chem. 2012, 51, 6443.
[71]
Klet, R. C.; Wang, T. C.; Fernandez, L. E.; Truhlar, D. G.; Hupp, J. T.; Farha, O. K. Chem. Mater. 2016, 28, 1213.
[72]
Peters, A. W.; Li, Z.; Farha, O. K.; Hupp, J. T. ACS Nano 2015, 9, 8484.
[73]
Peters, A. W.; Li, Z.; Farha, O. K.; Hupp, J. T. ACS Appl. Mater. Interfaces 2016, 8, 20675.
[74]
Peng, S.; Li, M.; Yang, X.; Li, P.; Liu, H.; Xiong, W.; Peng, X. Ceram. Int. 2019, 45, 18128.
[75]
Ahn, S.; Thornburg, N. E.; Li, Z.; Wang, T. C.; Gallington, L. C.; Chapman, K. W.; Notestein, J. M.; Hupp, J. T.; Farha, O. K. Inorg. Chem. 2016, 55, 11954.
[76]
Cui, Y.; Rimoldi, M.; Platero-Prats, A. E.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. ChemCatChem 2018, 10, 1772.
[77]
Goetjen, T. A.; Zhang, X.; Liu, J.; Hupp, J. T.; Farha, O. K. ACS Sustain. Chem. Eng. 2019, 7, 2553.
[78]
Ji, P.; Manna, K.; Lin, Z.; Feng, X.; Urban, A.; Song, Y.; Lin, W. J. Am. Chem. Soc. 2017, 139, 7004.
[79]
Ji, P.; Manna, K.; Lin, Z.; Urban, A.; Greene, F. X.; Lan, G.; Lin, W. J. Am. Chem. Soc. 2016, 138, 12234.
[80]
Kung, C. W.; Platero-Prats, A. E.; Drout, R. J.; Kang, J.; Wang, T. C.; Audu, C. O.; Hersam, M. C.; Chapman, K. W.; Farha, O. K.; Hupp, J. T. ACS Appl. Mater. Interfaces 2018, 10, 30532.
[81]
Li, Z.; Peters, A. W.; Bernales, V.; Ortuno, M. A.; Schweitzer, N. M.; DeStefano, M. R.; Gallington, L. C.; Platero-Prats, A. E.; Chapman, K. W.; Cramer, C. J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K. ACS Cent. Sci. 2017, 3, 31.
[82]
Liu, J.; Redfern, L. R.; Liao, Y.; Islamoglu, T.; Atilgan, A.; Farha, O. K.; Hupp, J. T. ACS Appl. Mater. Interfaces 2019, 11, 47822.
[83]
Noh, H.; Cui, Y.; Peters, A. W.; Pahls, D. R.; Ortuno, M. A.; Vermeulen, N. A.; Cramer, C. J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2016, 138, 14720.
[84]
Wang, Y. -H.; Chuang, C. -H.; Chiu, T. -A.; Kung, C. -W.; Yu, W. -Y. J. Phys. Chem. C 2020, 124, 12521.
[85]
Wang, Y. -S.; Chen, Y. -C.; Li, J. -H.; Kung, C. -W. Eur. J. Org. Chem. 2019, 2019, 3036.
[86]
Yuan, S.; Chen, Y. P.; Qin, J.; Lu, W.; Wang, X.; Zhang, Q.; Bosch, M.; Liu, T. F.; Lian, X.; Zhou, H. C. Angew. Chem. Int. Ed. 2015, 54, 14696.
[87]
Noh, H.; Kung, C. -W.; Otake, K. -i.; Peters, A. W.; Li, Z.; Liao, Y.; Gong, X.; Farha, O. K.; Hupp, J. T. ACS Catal. 2018, 8, 9848.
[88]
Kung, C. -W.; Audu, C. O.; Peters, A. W.; Noh, H.; Farha, O. K.; Hupp, J. T. ACS Energy Lett. 2017, 2, 2394.
[89]
He, D.; Niu, H.; He, S.; Mao, L.; Cai, Y.; Liang, Y. Water Res. 2019, 162, 151.
[90]
Li, X.; Zhang, Z.; Xiao, W.; Deng, S.; Chen, C.; Zhang, N. J. Mater. Chem. A 2019, 7, 14504.
[91]
Bhattacharyya, S.; Rambabu, D.; Maji, T. K. J. Mater. Chem. A 2019, 7, 21106.
[92]
Li, Y.; Jin, J.; Wang, D.; Lv, J.; Hou, K.; Liu, Y.; Chen, C.; Tang, Z. Nano Res. 2018, 11, 3294.
[93]
He, J.; Dong, J.; Hu, Y.; Li, G.; Hu, Y. Nanoscale 2019, 11, 6089.
[94]
Zhu, W.; Chen, M.; Liu, Y.; Tian, Y.; Song, Z.; Song, G.; Zhang, X. Nanoscale 2019, 11, 20630.
[95]
Liu, C.; Luo, L.; Zeng, L.; Xing, J.; Xia, Y.; Sun, S.; Zhang, L.; Yu, Z.; Yao, J.; Yu, Z.; Akakuru, O. U.; Saeed, M.; Wu, A. Small 2018, 14,e1801851.
[96]
Zhang, H.; Zhang, Q.; Liu, C.; Han, B. Biomater. Sci. 2019, 7, 1696.
[97]
Deng, X.; Liang, S.; Cai, X.; Huang, S.; Cheng, Z.; Shi, Y.; Pang, M.; Ma, P. a.; Lin, J. Nano Lett. 2019, 19, 6772.
[98]
Zhang, L.; Liu, C.; Gao, Y.; Li, Z.; Xing, J.; Ren, W.; Zhang, L.; Li, A.; Lu, G.; Wu, A.; Zeng, L. Adv. Healthc. Mater. 2018, 7,e1801144.
[99]
Fang, L.; Wang, W.; Liu, Y.; Xie, Z.; Chen, L. Dalton Trans. 2017, 46, 8933.
[100]
Yang, Q.; Xu, Q.; Yu, S. -H.; Jiang, H. -L. Angew. Chem. Int. Ed. 2016, 55, 3685.
[101]
Wang, L.; Li, S. R.; Chen, Y. Z.; Jiang, H. L. Small 2021, e2004481.
[102]
Wu, H.; Gu, D.; Xia, S.; Chen, F.; You, C.; Sun, B. Biomater. Sci. 2021, 9, 1020.
[103]
Sui, C.; Tan, R.; Chen, Y.; Yin, G.; Wang, Z.; Xu, W.; Li, X. Bioconjug. Chem. 2021, 32, 318.
[104]
Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I. H.; Yoo, K. H. ACS Nano 2009, 3, 2919.
[105]
Zou, L.; Wang, H.; He, B.; Zeng, L.; Tan, T.; Cao, H.; He, X.; Zhang, Z.; Guo, S.; Li, Y. Theranostics 2016, 6, 762.
[106]
Zhu, H.; Cheng, P.; Chen, P.; Pu, K. Biomater. Sci. 2018, 6, 746.
[107]
Gai, S.; Yang, G.; Yang, P.; He, F.; Lin, J.; Jin, D.; Xing, B. Nano Today 2018, 19, 146.
[108]
Gong, H.; Dong, Z.; Liu, Y.; Yin, S.; Cheng, L.; Xi, W.; Xiang, J.; Liu, K.; Li, Y.; Liu, Z. Adv. Funct. Mater. 2014, 24, 6492.
[109]
Arvizo, R. R.; Bhattacharyya, S.; Kudgus, R. A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Chem. Soc. Rev. 2012, 41, 2943.
[110]
von Maltzahn,, G.; Park,, J. H.; Agrawal,, A.; Bandaru,, N. K.; Das,, S. K.; Sailor,, M. J.; Bhatia,, S. N. Cancer Res. 2009, 69, 3892.
[111]
Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z.; Zheng, N. Nat. Nanotechnol. 2011, 6, 28.
[112]
Guo, T.; Wu, Y.; Lin, Y.; Xu, X.; Lian, H.; Huang, G.; Liu, J. Z.; Wu, X.; Yang, H. H. Small 2018, 14, 1702815.
[113]
Lu, J.; Yang, J.; Carvalho, A.; Liu, H.; Lu, Y.; Sow, C. H. Acc. Chem. Res. 2016, 49, 1806.
[114]
Liu, J.; Liu, T.; Du, P.; Zhang, L.; Lei, J. Angew. Chem. Int. Ed. 2019, 58, 7808.
[115]
Biswal, B. P.; Shinde, D. B.; Pillai, V. K.; Banerjee, R. Nanoscale 2013, 5, 10556.
[116]
Tian, Z.; Yao, X.; Ma, K.; Niu, X.; Grothe, J.; Xu, Q.; Liu, L.; Kaskel, S.; Zhu, Y. ACS Omega 2017, 2, 1249.
[117]
Cheng, L.; Yang, K.; Li, Y.; Chen, J.; Wang, C.; Shao, M.; Lee, S. T.; Liu, Z. Angew. Chem. Int. Ed. 2011, 50, 7385.
[118]
Li, W.; Wang, J.; Ren, J.; Qu, X. J. Am. Chem. Soc. 2014, 136, 2248.
[119]
Cheng, L.; Yang, K.; Li, Y.; Zeng, X.; Shao, M.; Lee, S. T.; Liu, Z. Biomaterials 2012, 33, 2215.
[120]
Cheng, Z.; Dai, Y.; Kang, X.; Li, C.; Huang, S.; Lian, H.; Hou, Z.; Ma, P.; Lin, J. Biomaterials 2014, 35, 6359.
[121]
Yang, W.; Li, X.; Chi, D.; Zhang, H.; Liu, X. Nanotechnol. 2014, 25, 482001.
[122]
Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Chem. Rev. 2015, 115, 395.
[123]
Chen, G.; Qiu, H.; Prasad, P. N.; Chen, X. Chem. Rev. 2014, 114, 5161.
[124]
Liu, Q.; Yang, T.; Feng, W.; Li, F. J. Am. Chem. Soc. 2012, 134, 5390.
[125]
Gao, S.; Zheng, P.; Li, Z.; Feng, X.; Yan, W.; Chen, S.; Guo, W.; Liu, D.; Yang, X.; Wang, S.; Liang, X. J.; Zhang, J. Biomaterials 2018, 178, 83.
[126]
Deng, K.; Hou, Z.; Li, X.; Li, C.; Zhang, Y.; Deng, X.; Cheng, Z.; Lin, J. Sci. Rep. 2015, 5, 7851.
[127]
Yang, D.; Xu, J.; Yang, G.; Zhou, Y.; Ji, H.; Bi, H.; Gai, S.; He, F.; Yang, P. Chem. Eng. J. 2018, 344, 363.
[128]
Cheng, L.; Gong, H.; Zhu, W.; Liu, J.; Wang, X.; Liu, G.; Liu, Z. Biomaterials 2014, 35, 9844.
[129]
Yang, Y.; Jing, L.; Li, X.; Lin, L.; Yue, X.; Dai, Z. Theranostics 2017, 7, 466.
[130]
Wang, D.; Zhou, J.; Chen, R.; Shi, R.; Zhao, G.; Xia, G.; Li, R.; Liu, Z.; Tian, J.; Wang, H.; Guo, Z.; Wang, H.; Chen, Q. Biomaterials 2016, 100, 27.
[131]
Valko, M.; Morris, H.; Cronin, M. T.D. Chem. Mater. 2005, 12, 1161.
[132]
Wang, D.; Zhou, J.; Shi, R.; Wu, H.; Chen, R.; Duan, B.; Xia, G.; Xu, P.; Wang, H.; Zhou, S.; Wang, C.; Wang, H.; Guo, Z.; Chen, Q. Theranostics 2017, 7, 4605.
[133]
Dong, W.; Li, Y.; Niu, D.; Ma, Z.; Gu, J.; Chen, Y.; Zhao, W.; Liu, X.; Liu, C.; Shi, J. Adv. Mater. 2011, 23, 5392.
[134]
Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y.; Liu, Z. Adv. Mater. 2012, 24, 1868.
[135]
Tang, S.; Huang, X.; Zheng, N. Chem. Commun. (Camb) 2011, 47, 3948.
[136]
Liu, Y.; Bai, J.; Jia, X.; Jiang, X.; Guo, Z. ACS Appl. Mater. Interfaces 2015, 7, 112.
[137]
Liu, H.; Chen, D.; Li, L.; Liu, T.; Tan, L.; Wu, X.; Tang, F. Angew. Chem. Int. Ed. 2011, 50, 891.
[138]
Jin, C. S.; Lovell, J. F.; Chen, J.; Zheng, G. ACS Nano 2013, 7, 2541.
[139]
Yang, K.; Xu, H.; Cheng, L.; Sun, C.; Wang, J.; Liu, Z. Adv. Mater. 2012, 24, 5586.
[140]
Guo, R.; Peng, H.; Tian, Y.; Shen, S.; Yang, W. Small 2016, 12, 4541.
[141]
Wang, Y.; Yang, T.; Ke, H.; Zhu, A.; Wang, Y.; Wang, J.; Shen, J.; Liu, G.; Chen, C.; Zhao, Y.; Chen, H. Adv. Mater. 2015, 27, 3874.
[142]
Li, B.; Wang, X.; Chen, L.; Zhou, Y.; Dang, W.; Chang, J.; Wu, C. Theranostics 2018, 8, 4086.
[143]
Zheng, X.; Wang, L.; Liu, M.; Lei, P.; Liu, F.; Xie, Z. Chem. Mater. 2018, 30, 6867.
[144]
Yang, Y.; Liu, J.; Liang, C.; Feng, L.; Fu, T.; Dong, Z.; Chao, Y.; Li, Y.; Lu, G.; Chen, M.; Liu, Z. ACS Nano 2016, 10, 2774.
[145]
Chen, L.; Zhang, J.; Zhou, X.; Yang, S.; Zhang, Q.; Wang, W.; You, Z.; Peng, C.; He, C. Acta Biomater. 2019, 86, 406.
[146]
Cai, X.; Liu, B.; Pang, M.; Lin, J. Dalton Trans. 2018, 47, 16329.
[147]
Cai, W.; Gao, H.; Chu, C.; Wang, X.; Wang, J.; Zhang, P.; Lin, G.; Li, W.; Liu, G.; Chen, X. ACS Appl. Mater. Interfaces 2017, 9, 2040.
[148]
Wang, C.; Xu, H.; Liang, C.; Liu, Y.; Li, Z.; Yang, G.; Cheng, L.; Li, Y.; Liu, Z. ACS Nano 2013, 7, 6782.
[149]
Cai, X.; Deng, X.; Xie, Z.; Shi, Y.; Pang, M.; Lin, J. Chem. Eng. J. 2019, 358, 369.
[150]
Chen, X.; Zhang, M.; Li, S.; Li, L.; Zhang, L.; Wang, T.; Yu, M.; Mou, Z.; Wang, C. J. Mater. Chem. B 2017, 5, 1772.
[151]
Huang, J.; Li, N.; Zhang, C.; Meng, Z. ACS Appl. Mater. Interfaces 2018, 10, 38729.
[152]
Repenko, T.; Fokong, S.; De Laporte, L.; Go, D.; Kiessling, F.; Lammers, T.; Kuehne, A. J. Chem. Commun. (Camb) 2015, 51, 6084.
[153]
Wu, Q.; Niu, M.; Chen, X.; Tan, L.; Fu, C.; Ren, X.; Ren, J.; Li, L.; Xu, K.; Zhong, H.; Meng, X. Biomaterials 2018, 162, 132.
[154]
Zhang, Y.; Wang, L.; Liu, L.; Lin, L.; Liu, F.; Xie, Z.; Tian, H.; Chen, X. ACS Appl. Mater. Interfaces 2018, 10, 41035.
[155]
Wang, D.; Wu, H.; Zhou, J.; Xu, P.; Wang, C.; Shi, R.; Wang, H.; Wang, H.; Guo, Z.; Chen, Q. Adv. Sci. 2018, 5, 1800287.
[156]
Li, S.; Zhang, L.; Liang, X.; Wang, T.; Chen, X.; Liu, C.; Li, L.; Wang, C. Chem. Eng. J. 2019, 378, 122175.
[157]
Wang, W.; Wang, L.; Li, Y.; Liu, S.; Xie, Z.; Jing, X. Adv. Mater. 2016, 28, 9320.
[158]
Varadi, L.; Luo, J. L.; Hibbs, D. E.; Perry, J. D.; Anderson, R. J.; Orenga, S.; Groundwater, P. W. Chem. Soc. Rev. 2017, 46, 4818.
[159]
Whiteley, M.; Diggle, S. P.; Greenberg, E. P. Nature 2017, 551, 313.
[160]
D'Elia, R. V.; Woods, S.; Butcher, W.; McGahon, J.; Khadke, S.; Perrie, Y.; Williamson, E. D. Roberts, C. W.; J. Control. Release 2019, 298, 202.
[161]
Raffatellu, M. Nat. Med. 2018, 24, 1097.
[162]
Schlaich, C.; Li, M.; Cheng, C.; Donskyi, I. S.; Yu, L.; Song, G.; Osorio, E.; Wei, Q.; Haag, R. Adv. Mater. Interfaces 2018, 5, 1701254.
[163]
Wang, W.; Hao, C.; Sun, M.; Xu, L.; Wu, X.; Xu, C.; Kuang, H. Adv. Funct. Mater. 2018, 28, 1805112.
[164]
Joseph, R.; Naugolny, A.; Feldman, M.; Herzog, I. M.; Fridman, M.; Cohen, Y. J. Am. Chem. Soc. 2016, 138, 754.
[165]
Zhang, Y.; Sun, P.; Zhang, L.; Wang, Z.; Wang, F.; Dong, K.; Liu, Z.; Ren, J.; Qu, X. Adv. Funct. Mater. 2019, 29,1808594.
[166]
Song, Z.; Wu, Y.; Cao, Q.; Wang, H.; Wang, X.; Han, H. Adv. Funct. Mater. 2018, 28,1800011.
[167]
Nie, X.; Wu, S.; Huang, F.; Wang, Q.; Wei, Q. ACS Appl. Mater. Interfaces 2021, 13, 2245.
[168]
Luo, Y.; Liu, X.; Tan, L.; Li, Z.; Yeung, K. W.K.; Zheng, Y.; Cui, Z.; Liang, Y.; Zhu, S.; Li, C.; Wang, X.; Wu, S. Chem. Eng. J. 2021, 405, 126730.
[169]
Liu, J.; Wu, D.; Zhu, N.; Wu, Y.; Li, G. Trend Food Sci. Technol. 2021, 109, 413.
[170]
Min, H.; Wang, J.; Qi, Y.; Zhang, Y.; Han, X.; Xu, Y.; Xu, J.; Li, Y.; Chen, L.; Cheng, K.; Liu, G.; Yang, N.; Li, Y.; Nie, G. Adv. Mater. 2019, 31,e1808200.
[171]
Yang, Y.; Ma, L.; Cheng, C.; Deng, Y.; Huang, J.; Fan, X.; Nie, C.; Zhao, W.; Zhao, C. Adv. Funct. Mater. 2018, 28,1705708.
[172]
Yu, X.; He, D.; Zhang, X.; Zhang, H.; Song, J.; Shi, D.; Fan, Y.; Luo, G.; Deng, J. ACS Appl. Mater. Interfaces 2019, 11, 1766.
[173]
Phan, T. N.; Buckner, T.; Sheng, J.; Baldeck, J. D.; Marquis, R. E. Oral Microbiol. Immun. 2004, 19, 31.
[174]
Liu, Z.; Tan, L.; Liu, X.; Liang, Y.; Zheng, Y.; Yeung, K. W.K.; Cui, Z.; Zhu, S.; Li, Z.; Wu, S. Colloids Surf. B 2020, 188, 110781.
[175]
Pan, X.; Bai, L.; Wang, H.; Wu, Q.; Wang, H.; Liu, S.; Xu, B.; Shi, X.; Liu, H. Adv. Mater. 2018, 30,e1800180.
[176]
Li, S.; Cheng, C.; Sagaltchik, A.; Pachfule, P.; Zhao, C.; Thomas, A. Adv. Funct. Mater. 2019, 29, 1807419.
[177]
Yang, Y.; Deng, Y.; Huang, J.; Fan, X.; Cheng, C.; Nie, C.; Ma, L.; Zhao, W.; Zhao, C. Adv. Funct. Mater. 2019, 29, 1900143.
[178]
Yang, Y.; Wu, X.; He, C.; Huang, J.; Yin, S.; Zhou, M.; Ma, L.; Zhao, W.; Qiu, L.; Cheng, C.; Zhao, C. ACS Appl. Mater. Interfaces 2020, 12, 13698.
[179]
Fan, X.; Yang, F.; Huang, J.; Yang, Y.; Nie, C.; Zhao, W.; Ma, L.; Cheng, C.; Zhao, C.; Haag, R. Nano Lett. 2019, 19, 5885.
[180]
Luo, Y.; Li, J.; Liu, X.; Tan, L.; Cui, Z.; Feng, X.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Zheng, Y.; Yeung, K. W.K.; Yang, C.; Wang, X.; Wu, S. ACS Cent. Sci. 2019, 5, 1591.
[181]
Han, D.; Han, Y.; Li, J.; Liu, X.; Yeung, K. W.K.; Zheng, Y.; Cui, Z.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Yuan, X.; Feng, X.; Yang, C.; Wu, S. Appl. Catal. B 2020, 261, 118248.
[182]
Yu, P.; Han, Y.; Han, D.; Liu, X.; Liang, Y.; Li, Z.; Zhu, S.; Wu, S. J. Hazard. Mater. 2020, 390, 122126.
[183]
Enserink, M. Science 2013, 341, 1050.
[184]
Orcutt, M.; Rayes, D.; Tarakji, A.; Katoub, M.; Spiegel, P.; Rubenstein, L.; Jabbour, S.; Alkhalil, M.; Alabbas, M.; Abbara, A. Lancet 2019, 394, 100.
[185]
Bobbitt, N. S.; Mendonca, M. L.; Howarth, A. J.; Islamoglu, T.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q. Chem. Soc. Rev. 2017, 46, 3357.
[186]
DeCoste, J. B.; Peterson, G. W. Chem. Rev. 2014, 114, 5695.
[187]
Liu, Y.; Howarth, A. J.; Vermeulen, N. A.; Moon, S. -Y.; Hupp, J. T.; Farha, O. K. Coord. Chem. Rev. 2017, 346, 101.
[188]
Yang, M. Q.; Gao, M.; Hong, M.; Ho, G. W. Adv. Mater. 2018, 30, e1802894.
[189]
Meng, X.; Wang, T.; Liu, L.; Ouyang, S.; Li, P.; Hu, H.; Kako, T.; Iwai, H.; Tanaka, A.; Ye, J. Angew. Chem. Int. Ed. 2014, 53, 11478.
[190]
Wang, F.; Huang, Y.; Chai, Z.; Zeng, M.; Li, Q.; Wang, Y.; Xu, D. Chem. Sci. 2016, 7, 6887.
[191]
Li, L.; Yang, W.; Yang, Q.; Guan, Q.; Lu, J.; Yu, S. -H.; Jiang, H. -L. ACS Catal. 2020, 10, 7753.
[192]
Yang, Q.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Angew. Chem. Int. Ed. 2019, 58, 3511.
[193]
Wang, S. S.; Jiao, L.; Qian, Y.; Hu, W. C.; Xu, G. Y.; Wang, C.; Jiang, H. L. Angew. Chem. Int. Ed. 2019, 58, 10713.
[194]
Xiao, J. -D.; Jiang, H. -L. Acc. Chem. Res. 2018, 52, 356.
[195]
Chen, Y. -Z.; Wang, Z. U.; Wang, H.; Lu, J.; Yu, S. -H.; Jiang, H. -L. J. Am. Chem. Soc. 2017, 139, 2035.
Outlines

/