Article

First-principles Study on Low Index Surface Structure Optimization and Surface Energy of LiMn2O4 Spinel Oxides

  • Yuan Lu ,
  • Jifen Wang ,
  • Huaqing Xie
Expand
  • School of Sciences, Shanghai Polytechnic University; Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai 201209, China

Received date: 2021-05-14

  Online published: 2021-06-02

Supported by

National Natural Science Foundation of China(51776116); Major Project of National Natural Science Foundation of China(51590902)

Abstract

The first principles density functional calculation method was used to calculate the index of low surface properties of LiMn2O4 spinel. Comparing with the bulk phase structures of LiMn2O4 crystals calculated by generalized gradient approximation (GGA) and generalized gradient approximation+on-site coulombic (GGA+U), it is found that the lattice parameters are obviously larger when the effective U value for the d orbital of Mn. However, the structural parameters of charge order and Jahn-Teller distortion are not found in own calculation. The results show that the Li terminal surface energy is lower when the (001), (010) and (100) surfaces of LiMn2O4 spinel in the state of lacking Li. The surface energy of (110) Mn/O terminal is lower than that of Li/Mn/O terminal in the state of lacking Li. The surface energy of (111) is the lowest in the low index surfaces. The surface energy of (111) after surface reconstruction is as low as 0.270 J/m2, which is the most stable section of spinel structure in this work. Considering antiferromagnetism, the surface energies of Mn/O terminal on (110) surface are lower than those of Li/Mn/O terminal, which Mn/O terminal surface energies are 1.050 J/m2 in the [↑↑↓↓] magnetic order and 1.061 J/m2 in [↑↓↑↓] magnetic order, respectively. The antiferromagnetic (110) surface is more stable in the spin configuration than in the magnetic order. We found that the structure of undercoordinated manganese ions on the surface are more stable by position exchange with the fully coordinated lithium ions by the observation of the surface reconstruction of (111). The Jahn-Teller effect is reduced when the average manganese oxidation state of the reconstructed surface is reduced. Except for (111) surface, the surface energies of other surfaces in the ferromagnetic state are similar to those in the antiferromagnetic state. Among them, the surface structures of (001)T3, (100)T1, (110)T1 and (111)T2 have the least surface energy among their own different surface terminals. This study provides theoretical calculation reference for understanding the capacity attenuation problem of LiMn2O4 materials and related experiments. It is also helpful to promote the research of high-performance lithium battery materials.

Cite this article

Yuan Lu , Jifen Wang , Huaqing Xie . First-principles Study on Low Index Surface Structure Optimization and Surface Energy of LiMn2O4 Spinel Oxides[J]. Acta Chimica Sinica, 2021 , 79(8) : 1058 -1064 . DOI: 10.6023/A21050213

References

[1]
Cai, Z. F.; Ma, Y. Z.; Huang, X. N.; Yan, X. H.; Yu, Z. X.; Zhang, S. H.; Song, G. S.; Xu, Y. L.; Wen, C. E.; Yang, W. D. J. Energy Storage. 2020, 27, 101036.
[2]
Lee, A.; Vrs, M.; Dose, W. M.; Niklas, J.; Johnson, C. S. Nat. Commun. 2019, 10, 977.
[3]
Xu, G. J.; Liu, Z. H.; Zhang, C. J.; Cui, G. L.; Chen, L. Q. J. Mater. Chem. A 2015, 3, 4092.
[4]
Liu, J. -D.; Zhang, Y. -D.; Liu, J. -X.; Li, J. -H.; Qiu, X. -G.; Cheng, F. -Y. Acta Chim. Sinica 2020, 78, 1426 (in Chinese.)
[4]
( 刘九鼎, 张宇栋, 刘俊祥, 李金翰, 邱晓光, 程方益, 化学学报, 2020, 78, 1426.)
[5]
Kozawa, T.; Harata, T.; Naito, M. J. Asian Ceram. Soc. 2020, 8, 309.
[6]
Yu, Y.; Guo, J.; Xiang, M.; Su, C.; Duan, K. Sci. Rep. 2019, 1, 16864.
[7]
Wei, T.; Zhuang, Q. -C.; Wu, C.; Cui, Y. -L.; Fang, L.; Sun, S. -G. Acta Chim. Sinica 2010, 68, 1481(in Chinese.)
[7]
( 魏涛, 庄全超, 吴超, 崔永丽, 方亮, 孙世刚, 化学学报, 2010, 68, 1481.)
[8]
Yu, F.; Zhang, J. -J.; Wang, C. -Y.; Yuan, J.; Yang, Y. -F.; Song, G. -Z. Prog. Chem. 2010, 22, 9 (in Chinese.)
[8]
( 于锋, 张敬杰, 王昌胤, 袁静, 杨岩峰, 宋广智, 化学进展, 2010, 22, 9.)
[9]
Liu, Y. J.; Li, X. H.; Guo, H. J.; Wang, Z. X.; Hu, Q. Y.; Peng, W. J.; Yang, Y. Rare Metals 2009, 4, 322.
[10]
Lin, C.; Robert, E. W.; Kan, S. C.; Joseph, A. L.; Christopher, J.; Zhen, Z. Y.; Mark, C.; Hersam, ; Jeffrey, P.; Greeley, ; Jeffrey, W. E. Chem 2018, 4, 2418.
[11]
Benedek, R.; Thackeray, M. M. Phys. Rev. B 2011, 83, 173.
[12]
Karim, A.; Fosse, S.; Persson, K. A. Phys. Rev. B 2013, 87, 178.
[13]
Ouyang, C. Y.; Zeng, X. M.; S?ljivancanin, Z.; Baldereschi, A. J. Phys. Chem. C 2010, 114, 4756.
[14]
Wang, T.; Wang, W.; Zhu, D.; Duan, X. -B.; Wei, Z. -Q.; Chen, Y. -G. Chin. J. Inorg. Chem. 2014, 30, 2461 (in Chinese.)
[14]
( 王婷, 王弯, 朱丁, 段晓波, 魏治乾, 陈云贵, 无机化学学报, 2014, 30, 2461.)
[15]
Bi, Z.; Zhao, N.; Ma, L.; Shi, C.; Guo, X. J. Mater. Chem. A 2020, 8, 4252.
[16]
Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.
[17]
Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
[18]
Shi, S. Q.; Gao, J.; Liu, Y.; Zhao, Y.; Wu, Q.; Ju, W. W.; Ouyang, C.; Xiao, R. J. Chinese Phys. B 2016, 25, 018212.
[19]
Wang, J.; Zhang, Z.; Zhang, Y. N.; Han, D.; Jin, L. L.; Sheng, L. Y.; Chartrand, P.; Medraj, M. Mater. Lett. 2019, 256, 126628.
[20]
Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. JOM 2013, 65, 1501.
[21]
Kirklin, S.; Meredig, B.; Wolverton, C. Adv. Energy Mater. 2013, 3, 252.
[22]
Vallverdu, G.; Minvielle, M.; Andreu, N.; Gonbeau, D.; Baraille, I. Surf. Sci. 2016, 649, 46.
[23]
Shukla, A.; Gaur, N. K.; Ghosh, P. Appl. Surf. Sci. 2020, 527, 146703.
[24]
Ouyang, C. Y.; Shi, S. Q.; Lei, M. S. J. Alloys Compd. 2009, 474, 370.
[25]
Tomeno, I.; Kasuya, Y.; Tsunoda, Y. Phys. Rev. B 2001, 64, 115.
[26]
Singh, G.; Gupta, S. L.; Prasad, R.; Auluck, S.; Gupta, R.; Sil, A. J. Phys. Chem. Solids 2009, 70, 1200.
[27]
Singh, P.; Sil, A.; Nath, M.; Ray, S. J. Electrochem. Soc. 2010, 157, 259.
[28]
Lee, Y. K. Ph.D. Dissertation, The University of Michigan, United States, 2015.
[29]
Garcia, J. C.; Bareo, J.; Chen, G.; Croy, J. R.; Iddir, H. Phys. Chem. Chem. Phys. 2020, 22, 24490.
[30]
Yan, P.; Nie, A.; Zheng, J.; Zhou, Y.; Lu, D.; Zhang, X.; Xu, R.; Belharouak, I.; Zu, X.; Xiao, J. Nano Lett. 2015, 15, 514.
[31]
Qian, K.; Tang, L. K.; Wagemaker, M.; He, Y. B.; Liu, D. Q.; Li, H.; Shi, R. Y.; Li, B. H.; Kang, F. Y. Adv. Sci. 2017, 4, 1700205.
[32]
Xu, C.; Märker, K.; Lee, J. H.; Mahadevegowda, A.; Reeves, P. J.; Day, S. J.; Groh, M. F.; Emge, S. P.; Ducati, C.; Layla, M. B.; Tang, C. C.; Grey, C. P. Nat. Mater. 2020, 20, 1.
[33]
Chen, J.; Wu, X. P.; Hope, M. A.; Qian, K.; Peng, L. Nat. Commun. 2019, 10, 5420.
[34]
Rasmussen, M. K.; Meinander, K.; Besenbacher, F.; Lauritsen, J. V. Beilstein J. Nanotechnol. 2012, 3, 192.
[35]
Yoo, S. H.; Todorova, M.; Neugebauer, J. R. Phys. Rev. Lett. 2018, 120, 066101.
[36]
Kim, S.; Aykol, M.; Wolverton, C. Phys. Rev. B 2015, 92, 115411.
[37]
Fu, C. C.; Wang, J. Y.; Wang, J. F.; Meng, L. L.; Zhang, W. M.; Li, X. T.; Li, L. P. J. Mater. Chem. A 2019, 7, 23149.
[38]
Julien, C. M.; Zaghib, K. Electrochim. Acta 2004, 50, 411.
[39]
Fu, K. M.S. Thesis, University of Pittsburgh, United States. 2014.
[40]
Yu, F. D.; Wang, Z. B.; Chen, F.; Jin, W.; Zhang, X. G.; Gu, D. M. J. Power Sources 2014, 262, 104.
Outlines

/