Article

Functionalized Upconversion Nanoparticles for Disassembly of β‑Amyloid Aggregation with Near-Infrared Excitation

  • Ju Huang ,
  • Zhen Li ,
  • Zhihong Liu
Expand
  • a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
    b College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China

Received date: 2021-05-06

  Online published: 2021-06-09

Supported by

National Natural Science Foundation of China(21807028); National Natural Science Foundation of China(21625503)

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory loss, confusion, and a variety of cognitive disabilities. The self-assembly and aggregation of β-amyloid (Aβ) peptides is a main feature of the brain of Alzheimer's disease, which can aggravate the nerve damage and cognitive impairment of AD patients. Therefore, inhibition of the aggregation of Aβ peptides is recognized as a potential strategy to alleviate AD. Photodynamic therapy (PDT) is a creative method that has wide applications in suppressing amyloid aggregation or eliminating the amyloid aggregates. However, most photosensitizers are excited by ultraviolet and visible light, have a low penetration depth in biological tissues, and cause serious tissue damage, which limits their application in biomedicine. Herein, we report a dual-targeting upconversion nanoprobe excited by near-infrared light to inhibit the Aβ aggregation process. The core-shell structured upconversion nanoparticles NaYF4:Yb,Er,Gd,Tm@NaYF4 are used as light converters, and the photosensitizer chlorin-e6 (Ce6) is loaded through the hydrophobic coating of the amphiphilic polymer 1,2-distearoylsn-glycero-3-phosphoethanolamine-N- [maleimide(polyethyleneglycol)-2000] (DSPE-PEG-MAL). A blood-brain barrier targeting peptide, TGN, and a Aβ target peptide, QSH, are simultaneously modified on the surface of nanoparticles via the specific reaction between maleimide and sulfhydryl groups. The results indicate that UCNPs can transfer the excited-state energy to the photosensitizer Ce6 through luminescence resonance energy transfer (LRET) process under the excitation of near-infrared light irradiation. After transition to the excited state, Ce6 further interact with the surrounding oxygen molecules to produce singlet oxygen (1O2) and irreversibly oxidize β-amyloid, thus effectively disassembling Aβ aggregates and reducing the cytotoxicity associated with Aβ. In addition, UCNPs-Ce6-TQ not only exhibits good biocompatibility, but also can effectively cross the blood-brain barrier and target Aβ42. This nanoprobe may be a powerful tool to inhibit the accumulation of Aβ in the brain and alleviate the neurotoxic damage caused by Aβ.

Cite this article

Ju Huang , Zhen Li , Zhihong Liu . Functionalized Upconversion Nanoparticles for Disassembly of β‑Amyloid Aggregation with Near-Infrared Excitation[J]. Acta Chimica Sinica, 2021 , 79(8) : 1049 -1057 . DOI: 10.6023/A21050194

References

[1]
Alzheimer's, association, Alzheimer's Dementia 2016, 12, 459.
[2]
Savelieff, M. G.; Nam, G.; Kang, J.; Lee, H. J.; Lee, M.; Lim, M. H. Chem. Rev. 2019, 119, 1221.
[3]
Iadanza, M. G.; Jackson, M. P.; Hewitt, E. W.; Ranson, N. A.; Radford, S. E. Nat. Rev. Mol. Cell Bio. 2018, 19, 755.
[4]
Hardy, J.; Selkoe, D. J. Science 2002, 297, 353.
[5]
Sun, H.; Liu, J.; Li, S. -L.; Zhou, L. -Y.; Wang, J. -W.; Liu, L. -B.; Lv, F. -T.; Gu, Q.; Hu, B. -Y.; Ma, Y. -G.; Wang, S. Angew. Chem. Int. Ed. 2019, 58, 5988.
[6]
Fan, L. -Y.; Mao, C. -Y.; Hu, X. -C.; Zhang, S.; Yang, Z. -H.; Hu, Z. -H.; Sun, H. -F.; Fan, Y.; Dong, Y. -L.; Yang, J.; Shi, C. -H.; Xu, Y. -M. Front. Neurol. 2019, 10, 1312.
[7]
De Strooper,, B.; Vassar,, R.; Golde,, T. Nat. Rev. Neurol. 2010, 6, 99.
[8]
Wilquet, V.; De Strooper, B. Curr. Opin. Neurobiol. 2004, 14, 582.
[9]
Haass, C.; Selkoe, D. J. Nat. Rev. Mol. Cell Bio. 2007, 8, 101.
[10]
Lee, S. J.C.; Nam, E.; Lee, H. J.; Savelieff, M. G.; Lim, M. H. Chem. Soc. Rev. 2017, 46, 310.
[11]
Ehrnhoefer, D. E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E. E. Nat. Struct. Mol. Biol. 2008, 15, 558.
[12]
Taniguchi, A.; Sasaki, D.; Shiohara, A.; Iwatsubo, T.; Tomita, T.; Sohma, Y.; Kanai, M. Angew. Chem. Int. Ed. 2014, 53, 1382.
[13]
Lee, B. I.; Lee, S.; Suh, Y. S.; Lee, J. S.; Kim, A. -k.; Kwon, O. Y.; Yu, K.; Park, C. B. Angew. Chem. Int. Ed. 2015, 54, 11472.
[14]
Suh, J. -M.; Kim, G.; Kang, J.; Lim, M. H. Inorg. Chem. 2019, 58, 8.
[15]
Guan, Y. -J.; Du, Z.; Gao, N.; Cao, Y.; Wang, X. -H.; Scott, P.; Song, H. -L.; Ren, J. -S.; Qu, X. -G. Sci. Adv. 2018, 4, eaao6718.
[16]
Goyal, D.; Shuaib, S.; Mann, S.; Goyal, B. ACS Comb. Sci. 2017, 19, 55.
[17]
Xiong, N.; Dong, X. -Y.; Zheng, J.; Liu, F. -F.; Sun, Y. ACS Appl. Mater. Inter. 2015, 7, 5650.
[18]
Niu, L.; Liu, L.; Xi, W. -H.; Han, Q. -S.; Li, Q.; Yu, Y.; Huang, Q. -X.; Qu, F. -Y.; Xu, M.; Li, Y. -B.; Du, H. -W.; Yang, R.; Cramer, J.; Gothelf, K. V.; Dong, M. -D.; Besenbacher, F.; Zeng, Q. -D.; Wang, C.; Wei, G-H.; G-H., Y. -L. ACS Nano 2016, 10, 4143.
[19]
Han, Q. -S.; Cai, S. -F.; Yang, L.; Wang, X. -H.; Qi, C.; Yang, R.; Wang, C. ACS Appl. Mater. Inter. 2017, 9, 21116.
[20]
Zhang, Z. -M.; Wang, J.; Song, Y. -X.; Wang, Z. -K.; Dong, M. -D.; Liu, L. Colloid. Surface. B 2019, 181, 341.
[21]
Zhang, J. -Y.; Liu, J. -P.; Zhu, Y. -Y.; Xu, Z. -A.; Xu, J.; Wang, T. -T.; Yu, H. -J.; Zhang, W. Chem. Commun. 2016, 52, 12044.
[22]
Ke, P. C.; Pilkington, E. H.; Sun, Y.; Javed, I.; Kakinen, A.; Peng, G.; Ding, F.; Davis, T. P. Adv. Mater. 2020, 32, 1901690.
[23]
Yu, D. -Q.; Liu, C.; Zhang, H. -C.; Ren, J. -S.; Qu, X. -G. Chem. Sci. 2021, 12, 4963.
[24]
Du, Z.; Li, M.; Ren, J. -S.; Qu, X. -G. Acc. Chem. Res. 2021, 54, 2172.
[25]
Furtado, D.; Björnmalm, M.; Ayton, S.; Bush, A. I.; Kempe, K.; Caruso, F. Adv. Mater. 2018, 30, 1801362.
[26]
Ali, I. U.; Chen, X. ACS Nano 2015, 9, 9470.
[27]
Yan, T.; Liu, Z. -H.; Song, X. -Y.; Zhang, S. -S. Acta Chim. Sinica 2020, 78, 657 (in Chinese.)
[27]
( 闫涛, 刘振华, 宋昕玥, 张书圣 化学学报 2020, 78, 657.)
[28]
Li, M. -L.; Peng, X. -J. Acta Chim. Sinica 2016, 74, 959 (in Chinese.)
[28]
( 李明乐, 彭孝军, 化学学报, 2016, 74, 959.)
[29]
Liu, W.; Dong, X. -Y.; Liu, Y.; Sun, Y. Acta Biomater. 2021, 123, 93.
[30]
Lee, B. I.; Chung, Y. J.; Park, C. B. Biomaterials 2019, 190-191, 121.
[31]
Tang, Y. -F.; Pei, F.; Lu, X. -M.; Fan, Q. -L.; Huang, W. Adv. Opt. Mater. 2019, 7, 1900917.
[32]
Liu, H. -W.; Zhu, L. -M.; Lou, X. -F.; Yuan, L.; Zhang, X. -B. Acta Chim. Sinica 2020, 78, 1240 (in Chinese.)
[32]
( 刘红文, 朱隆民, 娄霄峰, 袁林, 张晓兵, 化学学报, 2020, 78, 1240.)
[33]
Yang, Y.; Liu, H. -L.; Han, M. -J.; Sun, B. -B.; Li, J. -B. Angew. Chem. Int. Ed. 2016, 55, 13538.
[34]
Dong, H.; Du, S. -R.; Zheng, X. -Y.; Lyu, G. -M.; Sun, L. -D.; Li, L. -D.; Zhang, P. -Z.; Zhang, C.; Yan, C. -H. Chem. Rev. 2015, 115, 10725.
[35]
Chen, G. -Y.; Qiu, H. -L.; Prasad, P. N.; Chen, X. -Y. Chem. Rev. 2014, 114, 5161.
[36]
Zhou, J.; Liu, Z.; Li, F. -Y. Chem. Soc. Rev. 2012, 41, 1323.
[37]
Zheng, W.; Huang, P.; Tu, D. -T.; Ma, E.; Zhu, H. -M.; Chen, X. -Y. Chem. Soc. Rev. 2015, 44, 1379.
[38]
Wang, P. -P.; Liang, T.; Zuo, M. -M.; Li, Z.; Liu, Z. -H. Acta Chim. Sinica 2020, 78, 797 (in Chinese.)
[38]
( 王培培, 梁涛, 左苗苗, 李贞, 刘志洪, 化学学报, 2020, 78, 797.)
[39]
Idris, N. M.; Jayakumar, M. K.G.; Bansal, A.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 1449.
[40]
Yang, D. -M.; Ma, P. A.; Hou, Z. -Y.; Cheng, Z. -Y.; Li, C. -X.; Lin, J. Chem. Soc. Rev. 2015, 44, 1416.
[41]
Hao, C. -L.; Wu, X. -L.; Sun, M. -Z.; Zhang, H. -Y.; Yuan, A. -M.; Xu, L. -G.; Xu, C. -L.; Kuang, H. J. Am. Chem. Soc. 2019, 141, 19373.
[42]
Zhu, X. -J.; Li, J. -C.; Qiu, X. -C.; Liu, Y.; Feng, W.; Li, F. -Y. Nat. Commun. 2018, 9, 2176.
[43]
Zhao, J.; Chu, H. -Q.; Zhao, Y.; Lu, Y.; Li, L. -L. J. Am. Chem. Soc. 2019, 141, 7056.
[44]
Xu, J.; Xu, L. -G.; Wang, C. -Y.; Yang, R.; Zhuang, Q.; Han, X.; Dong, Z. -L.; Zhu, W. -W.; Peng, R.; Liu, Z. ACS Nano 2017, 11, 4463.
[45]
Zhou, Y. -Q.; Peng, Z. -L.; Seven, E. S.; Leblanc, R. M. J. Control. Release 2018, 270, 290.
[46]
Li, J. -W.; Feng, L.; Fan, L.; Zha, Y.; Guo, L-R.; Zhang, Q. -Z.; Chen, J.; Pang, Z. -Q.; Wang, Y. -C.; Jiang, X. -G.; Yang, V. C.; Wen, L. -P.. Biomaterials 2011, 32, 4943.
[47]
Yang, L. -C.; Sun, J.; Xie, W. -J.; Liu, Y. -N.; Liu, J. J. Mater. Chem. B 2017, 5, 5954.
[48]
Wiesehan, K.; Buder, K.; Linke, R. P.; Patt, S.; Stoldt, M.; Unger, E.; Schmitt, B.; Bucci, E.; Willbold, D. ChemBioChem 2003, 4, 748.
[49]
Zhang, C.; Zheng, X. -Y.; Wan, X.; Shao, X. -Y.; Liu, Q. -F.; Zhang, Z. -M.; Zhang, Q. -Z. J. Control. Release 2014, 192, 317.
[50]
Zhang, C.; Wan, X.; Zheng, X. -Y.; Shao, X. -Y.; Liu, Q. -F.; Zhang, Q. -Z.; Qian, Y. Biomaterials 2014, 35, 456.
[51]
Biancalana, M.; Koide, S. BBA-Proteins Proteomics 2010, 1804, 1405.
[52]
Younan, N. D.; Viles, J. H. Biochemistry 2015, 54, 4297.
[53]
Bartolini, M.; Bertucci, C.; Bolognesi, M. L.; Cavalli, A.; Melchiorre, C.; Andrisano, V. ChemBioChem 2007, 8, 2152.
[54]
Abbott, N. J.; Patabendige, A. A.; Dolman, D. E.; Yusof, S. R.; Begley, D. J. Neurobiol. Dis. 2010, 37, 13.
[55]
Srinivasan, B.; Kolli, A. R.; Esch, M. B.; Abaci, H. E.; Shuler, M. L.; Hickman, J. J. J. Lab. Autom. 2015, 20, 107.
[56]
Wei, Y.; Lu, F. -Q.; Zhang, X. -R.; Chen, D. -P. Chem. Mater. 2006, 18, 5733.
Outlines

/