Review

Research Progress on the Macrocycle-Derived Artificial Transmembrane Ion Channels

  • Tengfei Yan ,
  • Shengda Liu ,
  • Yichen Luo ,
  • Yingping Zou ,
  • Junqiu Liu
Expand
  • a College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
    b College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
    c College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China

Received date: 2021-05-19

  Online published: 2021-06-24

Supported by

National Natural Science Foundation of China(21875286); National Natural Science Foundation of China(22001054); National Natural Science Foundation of China(22075065)

Abstract

Macrocycles such as cyclodextrin and crown ether are applied to construct artificial transmembrane ion transport systems owing to their unique cavity structure and the ability to recognize molecules and ions via host-guest interaction. Compared with natural channel proteins, macrocycles have many advantages, such as the low cost, stabilities, easy structural modification and functionalization, etc., which make them preferable candidates for preparing artificial ion channel. Herein, we reviewed the recent progress of macrocycles-based artificial ion channels, and systematically summarized the preparation methods, structural regulation and potential applications of the artificial ion channels based on different macrocycles. Finally, we have briefly summarized and outlooked the progress of macrocycle-based artificial ion channels. This review is of great significance for developing novel artificial transmembrane ion channels and exploring their potential applications.

Cite this article

Tengfei Yan , Shengda Liu , Yichen Luo , Yingping Zou , Junqiu Liu . Research Progress on the Macrocycle-Derived Artificial Transmembrane Ion Channels[J]. Acta Chimica Sinica, 2021 , 79(8) : 999 -1007 . DOI: 10.6023/A21050222

References

[1]
Hedin, L. E.; Illergard, K.; Elofsson, A. Proteome Res. 2011, 10, 3324.
[2]
Cho, W.; Stahelin, R. V. Annu. Rev. Bioph. Biom. 2005, 34, 119.
[3]
Elborn, J. S. Lancet 2016, 388, 2519.
[4]
Sanguinetti, M. C.; Tristani-Firouzi, M. Nature 2006, 440, 463.
[5]
Sakai, N.; Sordé, N.; Matile, S. J. Am. Chem. Soc. 2003, 125, 7776.
[6]
Sakai, N.; Matile, S. Langmuir 2013, 29, 9031.
[7]
Guo, Y.; Zhang, Y.; Li, J.; Zhao, F.; Liu, Y.; Su, M.; Jiang, Y.; Liu, Y.; Zhang, J.; Yang, B.; Yang, R. Chin. J. Chem. 2016, 34, 425.
[8]
Liu, Z.; Samanta, A.; Lei, J.; Sun, J.; Wang, Y.; Stoddart, J. F. J. Am. Chem. Soc. 2016, 138, 11643.
[9]
Liu, Z.; Frasconi, M.; Lei, J.; Brown, Z. J.; Zhu, Z.; Cao, D.; Iehl, J.; Liu, G.; Fahrenbach, A. C.; Botros, Y. Y.; Farha, O. K.; Hupp, J. T.; Mirkin, C. A.; Fraser-Stoddart, J. Nat. Commun. 2013, 4, 1855.
[10]
Tabushi, I.; Kuroda, Y.; Yokota, K. Tetrahedron Lett. 1982, 23, 4601.
[11]
Anderson, M. P.; Rich, D. P.; Gregory, R. J.; Smith, A. E.; Welsh, M. J. Science 1991, 251, 679.
[12]
Madhavan, N.; Robert, E. C.; Gin, M. S. Angew. Chem., Int. Ed. 2005, 44, 7584.
[13]
Mamad-Hemouch, H.; Ramoul, H.; Abou, T. M.; Bacri, L.; Huin, C.; Przybylski, C.; Oukhaled, A.; Thiébot, B.; Patriarche, G.; Jarroux, N.; Pelta, J. Nano Lett. 2015, 15, 7748.
[14]
Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017.
[15]
Tang, C. C.; Wang, L. H.; Yun, Y. B.; Zhang, C. L.; Liu, B. Q. Acta Chim. Sinica 2011, 69, 343. (in Chinese)
[15]
( 唐橙橙, 王丽华, 贠延滨, 张陈淋, 刘必前, 化学学报, 2011, 69, 343.)
[16]
Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. Rev. 2004, 104, 2723.
[17]
Nakano, A.; Xie, Q.; Mallen, J. V.; Echegoyen, L.; Gokel, G. W. J. Am. Chem. Soc. 1990, 112, 1287.
[18]
Negin, S.; Patel, M. B.; Gokel, M. R.; Meisel, J. W.; Gokel, G. W. ChemBioChem 2016, 17, 2153.
[19]
Atkins, J. L.; Patel, M. B.; Cusumano, Z.; Gokel, G. W. Chem. Commun. 2010, 46, 8166.
[20]
Neevel, J. G.; Nolte, R. J.M. Tetrahedron Lett. 1984, 25, 2263.
[21]
Voyer, N.; Robitaille, M. J. Am. Chem. Soc. 1995, 117, 6599.
[22]
Ren, C.; Shen, J.; Zeng, H. J. Am. Chem. Soc. 2017, 139, 12338.
[23]
Li, N.; Chen, F.; Shen, J.; Zhang, H.; Wang, T.; Ye, R.; Li, T.; Loh, T. P.; Yang, Y. Y.; Zeng, H. J. Am. Chem. Soc. 2020, 142, 21082.
[24]
Ren, C.; Zeng, F.; Shen, J.; Chen, F.; Roy, A.; Zhou, S.; Ren, H.; Zeng, H. J. Am. Chem. Soc. 2018, 140, 8817.
[25]
Roy, A.; Joshi, H.; Ye, R.; Shen, J.; Chen, F.; Aksimentiev, A.; Zeng, H. Angew. Chem., Int. Ed. 2020, 59, 4806.
[26]
Shen, J.; Fan, J.; Ye, R.; Li, N.; Mu, Y.; Zeng, H. Angew. Chem., Int. Ed. 2020, 59, 13328.
[27]
Shen, J.; Ye, R.; Romanies, A.; Roy, A.; Chen, F.; Ren, C.; Liu, Z.; Zeng, H. J. Am. Chem. Soc. 2020, 142, 10050.
[28]
Böhmer, V. Angew. Chem., Int. Ed. 1995, 34, 713.
[29]
Li, C. B.; Yue, Y. L.; Liu, B. Q.; Fan, S. D. Chin. J. Org. Chem. 2011, 31, 819. (in Chinese)
[29]
( 李春斌, 岳玉莲, 刘宝全, 范圣第, 有机化学, 2011, 31, 819.)
[30]
Matthews, S. E.; Schmitt, P.; Felix, V.; Drew, M. G.B.; Beer, P. D. J. Am. Chem. Soc. 2002, 124, 1341.
[31]
Tanaka, Y.; Kobuke, Y.; Sokabe, M. Angew. Chem., Int. Ed. 1995, 34, 693.
[32]
Yoshino, N.; Satake, A.; Kobuke, Y. Angew. Chem., Int. Ed. 2001, 40, 457.
[33]
Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T. -A.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022.
[34]
Si, W.; Xin, P.; Li, Z. -T.; Hou, J. -L. Acc. Chem. Res. 2015, 48, 1612.
[35]
Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.; Huang, F. Acc. Chem. Res. 2012, 45, 1294.
[36]
Si, W.; Hu, X. -B.; Liu, X. -H.; Fan, R.; Chen, Z.; Weng, L.; Hou, J. -L. Tetrahedron Lett. 2011, 52, 2484.
[37]
Si, W.; Chen, L.; Hu, X. -B.; Tang, G.; Chen, Z.; Hou, J. -L.; Li, Z. -T. Angew. Chem., Int. Ed. 2011, 50, 12564.
[38]
Chen, J. -Y.; Xiao, Q.; Behera, H.; Hou, J. -L. Chinese Chem. Lett. 2020, 31, 77.
[39]
Han, B.; Liu, Y. Chin. J. Org. Chem. 2003, 23, 139. (in Chinese)
[39]
( 韩宝航, 刘育, 有机化学, 2003, 23, 139.)
[40]
Kim, K.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J. Chem. Soc. Rev. 2007, 36, 267.
[41]
Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. -J.; Kim, K. Acc. Chem. Res. 2003, 36, 621.
[42]
Zhou, Y.; Morais-Cabral, J. H.; Kaufman, A.; MacKinnon, R. Nature 2001, 414, 43.
[43]
Jeon, Y. J.; Kim, H.; Jon, S.; Selvapalam, N.; Oh, D. H.; Seo, I.; Park, C. -S.; Jung, S. R.; Koh, D. -S.; Kim, K. J. Am. Chem. Soc. 2004, 126, 15944.
[44]
Andersen, O. S.; Koeppe, R. E.; Roux, B. IEEE T. NanoBiosci. 2005, 4, 10.
[45]
Beaven, A. H.; Maer, A. M.; Sodt, A. J.; Rui, H.; Pastor, R. W.; Andersen, O. S.; Im, W. Biophys. J. 2017, 112, 1185.
[46]
Ghadiri, M. R.; Granja, J. R.; Buehler, L. K. Nature 1994, 369, 301.
[47]
Montenegro, J.; Ghadiri, M. R.; Granja, J. R. Acc. Chem. Res. 2013, 46, 2955.
[48]
Zhou, X.; Liu, G.; Yamato, K.; Shen, Y.; Cheng, R.; Wei, X.; Bai, W.; Gao, Y.; Li, H.; Liu, Y.; Liu, F.; Czajkowsky, D. M.; Wang, J.; Dabney, M. J.; Cai, Z.; Hu, J.; Bright, F. V.; He, L.; Zeng, X. C.; Shao, Z.; Gong, B. Nat. Commun. 2012, 3, 949.
[49]
Hud, N. V.; Smith, F. W.; Anet, F. A.L.; Feigon, J. Biochemistry 1996, 35, 15383.
[50]
Kwok, C. K.; Merrick, C. J. Trends Biotechnol. 2017, 35, 997.
[51]
Kaucher, M. S.; Harrell, W. A.; Davis, J. T. J. Am. Chem. Soc. 2006, 128, 38.
[52]
Furukawa, H.; Kim, J.; Plass, K. E.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 8398.
[53]
Eisenman, G.; Horn, R. J. Membrane Biol. 1983, 76, 197.
[54]
Xin, P.; Kong, H.; Sun, Y.; Zhao, L.; Fang, H.; Zhu, H.; Jiang, T.; Guo, J.; Zhang, Q.; Dong, W.; Chen, C. -P. Angew. Chem., Int. Ed. 2019, 58, 2779.
[55]
Chen, J. -Y.; Hou, J. -L. Org. Chem. Front. 2018, 5, 1728.
[56]
Bao, C.; Ma, M.; Meng, F.; Lin, Q.; Zhu, L. New J. Chem. 2015, 39, 6297.
[57]
Zhou, Y.; Chen, Y.; Zhu, P. -P.; Si, W.; Hou, J. -L.; Liu, Y. Chem. Commun. 2017, 53, 3681.
[58]
Abbott, G. W. Front. Physiol. 2020, 11, 583.
[59]
Si, W.; Li, Z. -T.; Hou, J. -L. Angew. Chem., Int. Ed. 2014, 53, 4578.
[60]
Jog, P. V.; Gin, M. S. Org. Lett. 2008, 10, 3693.
[61]
Xin, P.; Tan, S.; Wang, Y.; Sun, Y.; Wang, Y.; Xu, Y.; Chen, C. -P. Chem. Commun. 2017, 53, 625.
[62]
Gentzsch, M.; Mall, M. A. Chest 2018, 154, 383.
[63]
Burg, S.; Attali, B. Trends Pharmacol. Sci. 2021, 42, 491.
[64]
Lerche, H.; Jurkat-Rott, K.; Lehmann-Horn, F. Am. J. Med. Genet. 2001, 106, 146.
[65]
Martinez, P. M.; Molenaar, P. C.; Losenn, M.; Stevens, J.; Baets, M. H.D.; Szoke, M.; Honnorat, J.; Tamouza, R.; Leboyer, M.; Os, J. V.; Rutten, B. P.F. Front. Genet. 2013, 4, 1.
[66]
Muraglia, K. A.; Chorghade, R. S.; Kim, B. R.; Tang, X. X.; Shah, V. S.; Grillo, A. S.; Daniels, P. N.; Cioffi, A. G.; Karp, P. H.; Zhu, L.; Welsh, M. J.; Burke, M. D. Nature 2019, 567, 405.
[67]
Béven, L.; Helluin, O.; Molle, G.; Duclohier, H.; Wróblewski, H. BBA-Biomembranes 1999, 1421, 53.
[68]
Wu, C.; Li, M.; Chen, W. Diabet. Metab. Synd. Ob. 2021, 14, 285.
[69]
Haoyang, W. -W.; Zhang, M.; Hou, J. -L. Chin. J. Chem. 2019, 37, 25.
[70]
Leevy, W. M.; Donato, G. M.; Ferdani, R.; Goldman, W. E.; Schlesinger, P. H.; Gokel, G. W. J. Am. Chem. Soc. 2002, 124, 9022.
[71]
Xin, P.; Sun, Y.; Kong, H.; Wang, Y.; Tan, S.; Guo, J.; Jiang, T.; Dong, W.; Chen, C. -P. Chem. Commun. 2017, 53, 11492.
[72]
Prevarskaya, N.; Skryma, R.; Shuba, Y. Trends Mol. Med. 2010, 16, 107.
[73]
Kunzelmann, K. J. Membrane Biol. 2005, 205, 159.
[74]
Abdul, M.; Hoosein, N. Cancer Let. 2002, 186, 99.
[75]
Britschgi, A.; Bill, A.; Brinkhaus, H.; Rothwell, C.; Clay, I.; Duss, S.; Rebhan, M.; Raman, P.; Guy, C. T.; Wetzel, K.; George, E.; Popa, M. O.; Lilley, S.; Choudhury, H.; Gosling, M.; Wang, L.; Fitzgerald, S.; Borawski, J.; Baffoe, J.; Labow, M.; Gaither, L. A.; Bentires-Alj, M. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 1026.
[76]
Spugnini, E. P.; Sonveaux, P.; Stock, C.; Perez-Sayans, M.; De Milito, A.; Avnet, S.; Garcìa, A. G.; Harguindey, S.; Fais, S. BBA- Biomembranes 2015, 1848, 2715.
[77]
Panyi, G.; Beeton, C.; Felipe, A. Philos. T. R. Soc. B 2014, 369, 20130106.
[78]
Pedersen, S. F.; Stock, C. Cancer Res. 2013, 73, 1658.
[79]
Haoyang, W. -W.; Xiao, Q.; Ye, Z.; Fu, Y.; Zhang, D. -W.; Li, J.; Xiao, L.; Li, Z. -T.; Hou, J. -L. Chem. Commun. 2021, 57, 1097.
Outlines

/