Article

Microwave-assisted Synthesis of rGO/CeO2 Supercapacitor Electrode Materials with Excellent Electrochemical Properties

  • Yao Zhai ,
  • Guoxiang Xin ,
  • Jiaqi Wang ,
  • Bangwen Zhang ,
  • Jinling Song ,
  • Xiaoxu Liu
Expand
  • a School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
    b Department of Physics, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China

Received date: 2021-05-16

  Online published: 2021-07-29

Supported by

National Natural Science Foundation of China(51902085); Natural Science Foundation of Inner Mongolia(2021MS05011); Natural Science Foundation of Inner Mongolia(2020ZD17); Natural Science Foundation of Inner Mongolia(2019MS02023); Natural Science Foundation of Hebei Province(E2019407123); Postgraduate Education Innovation Program of Inner Mongolia.

Abstract

CeO2 possesses excellent pseudocapacitance, nevertheless the electrochemical properties of carbon/CeO2 composites need to be improved. In this paper, reduced graphene oxide (rGO)/CeO2 composite is prepared via a simple microwave-assisted synthesis method. The typical synthesis process is as follows. Firstly, 60 mg of graphene oxide was dissolved into 50 mL of deionized water. Then 20 mL of 0.17 mol•L-1 Ce(NO3)3•6H2O solution was added under ultrasonic conditions. The electrostatic assembly led to the combination of the graphene oxide and Ce(NO3)3. Afterwards, 10 mL of 1.5 mol•L-1 KOH was added dropwise into the mixed solution until the pH value up to 10. The rGO/CeO2 was synthesized in the above-mentioned mixed solution by using the microwave heating method. The heating time was set for 45 s. Repeated the microwave heating process for five times after the solution cooled down to the room temperature. Finally, the rGO/CeO2 was harvested by centrifugation, washing and freeze-drying. The CeO2, in the form of particles, distributes uniformly and conformally on the surface of the corrugated rGO by the morphology observation. The existence of the tiny gaps is displayed between the nano-scaled CeO2 particles. N2 adsorption/desorption analysis suggests that the rGO/CeO2 has large specific area and pores in the mesoporous size, which is helpful to the sufficient contact with the electrolyte. By the electrochemical measurements, the specific capacitance of the rGO/CeO2 is as high as 468 F•g-1 and the capacity retention is up to 107.3% after 10000 charge/discharge cycles. The excellent cycling stability is attributed to the good synergistic effect between the rGO with large specific area and the CeO2 with uniform and thin layer, which decreases the resistance of ion transport, and the tiny gaps between CeO2 particles, which mitigates the lattice expansion during the transformation from Ce4+ to Ce3+. The energy density of the assembled symmetrical supercapacitor rGO/CeO2||rGO/CeO2 reaches 18.16 Wh•kg-1. As a supercapacitor electrode material, the rGO/CeO2 has wide prospect.

Cite this article

Yao Zhai , Guoxiang Xin , Jiaqi Wang , Bangwen Zhang , Jinling Song , Xiaoxu Liu . Microwave-assisted Synthesis of rGO/CeO2 Supercapacitor Electrode Materials with Excellent Electrochemical Properties[J]. Acta Chimica Sinica, 2021 , 79(9) : 1129 -1137 . DOI: 10.6023/A21050216

References

[1]
Krishnamoorthy, K.; Pazhamalai, P.; Mariappan, V. K.; Nardekar, S. S.; Sahoo, S.; Kim, S. J. Nat. Commun. 2020, 11, 2351.
[2]
Korkmaz, S.; Kariper, İ. A. J. Energy Storage 2020, 27, 101038.
[3]
Zhao, J.; Gong, J. W.; Li, Y. J.; Cheng, K.; Ye, K.; Zhu, K.; Yan, J.; Cao, D. X.; Wang, G. L. Acta Chim. Sinica 2018, 76, 107. (in Chinese)
[3]
( 赵婧, 龚俊伟, 李一举, 程魁, 叶克, 朱凯, 闫俊, 曹殿学, 王贵领, 化学学报, 2018, 76, 107.)
[4]
Shang, Z.; An, X. Y.; Zhang, H.; Shen, M. X.; Baker, F.; Liu, Y. X.; Liu, L. Q.; Yang, J.; Cao, H. B.; Xu, Q. L.; Liu, H. B.; Ni, Y. H. Carbon 2020, 161, 62.
[5]
Cheng, F.; Yang, X. P.; Zhang, S. P.; Lu, W. J. Power Sources 2020, 450, 227678.
[6]
Bian, Y. S.; Liu, K.; Guo, Y. L.; Liu, Y. Q. Acta Chim. Sinica 2020, 78, 848. (in Chinese)
[6]
( 边洋爽, 刘凯, 郭云龙, 刘云圻, 化学学报, 2020, 78, 848.)
[7]
Xing, T.; Ouyang, Y. H.; Chen, Y. L.; Zheng, L. P.; Wu, C.; Wang, X. Y. J. Energy Storage 2020, 28, 101248.
[8]
Kumar, R.; Youssry, S. M.; Ya, K. Z.; Tan, W. K.; Kawamura, G.; Matsuda, A. Diamond Relat. Mater. 2020, 101, 107622.
[9]
Zhang, H. H.; Gu, J. N.; Tong, J.; Hu, Y. F.; Guan, B.; Hu, B.; Zhao, J.; Wang, C. Y. Chem. Eng. J. 2016, 286, 139.
[10]
Sarpoushi, M. R.; Nasibi, M.; Golozar, M. A.; Shishesaz, M. R.; Borhani, M. R.; Noroozi, S. Mat. Sci. Semicon. Proc. 2014, 26, 374.
[11]
Maiti, S.; Pramanik, A.; Mahanty, S. Chem. Commun. 2014, 50, 11717.
[12]
Shi, J. F.; Sun, M. X. Mod. Chem. Ind. 2019, 39, 162. (in Chinese)
[12]
( 史纪峰, 孙明轩, 现代化工, 2019, 39, 162.)
[13]
Li, T. M.S. Thesis, Shaanxi University of Science and Technology, Xi'an, 2018. (in Chinese)
[13]
( 李彤, 硕士论文, 陕西科技大学, 西安, 2018.)
[14]
Xin, G. X.; Wang, M. M.; Zhai, Y.; Wang, Y. H.; Zhang, B. W.; Song, J. L.; Liu, X. X. Acta Materiae Compositae Sinica 2021, 38, 1272. (in Chinese)
[14]
( 辛国祥, 王蒙蒙, 翟耀, 王艳辉, 张邦文, 宋金玲, 刘晓旭, 复合材料学报, 2021, 38, 1272.)
[15]
Li, T.; Liu, H. Powder Technol. 2018, 327, 275.
[16]
Zeng, G. J.; Chen, Y.; Chen, L.; Xiong, P. X.; Wei, M. D. Electrochim. Acta 2016, 222, 773.
[17]
Wu, H. M.S. Thesis, Nanjing University of Posts and Telecommunications, Nanjing, 2020. (in Chinese)
[17]
( 吴浩, 硕士论文, 南京邮电大学, 南京, 2020.)
[18]
Zhang, Y. Q. M.S. Thesis, Southwest University of Science and Technology, Mianyang, 2020. (in Chinese)
[18]
( 张雨晴, 硕士论文, 西南科技大学, 绵阳, 2020.)
[19]
Huang, D. X.; Zhang, Y.; Zeng, T.; Zhang, Y. Y.; Wan, Q. J.; Yang, N. J. Chem. J. Chin. Univ. 2021, 42, 643. (in Chinese)
[19]
( 黄东雪, 章颖, 曾婷, 张媛媛, 万其进, 杨年俊, 高等学校化学学报, 2021, 42, 643.)
[20]
Zhao, R.; Huan, L.; Gu, P.; Guo, R.; Chen, M.; Diao, G. J. Power Sources 2016, 331, 527.
[21]
Jeyaranjan, A.; Sakthivel, T. S.; Molinari, M.; Sayle, D. C.; Seal, S. Adv. Sci. 2018, 35, 1800176.
[22]
Lv, Z. J.; Zhong, Q.; Ou, M. Appl. Surf. Sci. 2016, 376, 91.
[23]
Prasanna, K.; Santhoshkumar, P.; Jo, Y. N.; Sivagami, I. N.; Kang, S. H.; Joe, Y. C.; Lee, C. W. Appl. Surf. Sci. 2018, 449, 454.
[24]
Li, T. T.; Zhao, J. K.; Li, Y.; Quan, Z. L.; Xu, J. Acta Chim. Sinica 2017, 75, 485. (in Chinese)
[24]
( 李甜甜, 赵继宽, 李尧, 全贞兰, 徐洁, 化学学报, 2017, 75, 485.)
[25]
Phokha, S.; Hunpratub, S.; Usher, B.; Pimsawat, A.; Chanlek, N.; Maensiri, S. Appl. Surf. Sci. 2018, 446, 36.
[26]
Manibalan, G.; Murugadoss, G.; Thangamuthu, R.; Ragupathy, P.; Kumar, R. M.; Jayavel, R. Appl. Surf. Sci. 2018, 456, 104.
[27]
Wang, Z. Q.; Zhao, P. F.; He, D. N.; Cheng, Y.; Liao, L. S.; Li, S. D.; Luo, Y. Y.; Peng, Z.; Li, P. W. Phys. Chem. Chem. Phys. 2018, 20, 14155.
[28]
Ji, Z. Y.; Shen, X. P.; Zhou, H.; Chen, K. M. Ceram. Int. 2015, 41, 8710.
[29]
Zhang, H. M.S. Thesis, Jiangxi Normal University, Nanchang, 2019. (in Chinese)
[29]
( 张航, 硕士论文, 江西师范大学, 南昌, 2019.)
[30]
Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Adv. Mater. 2006, 18, 2619.
[31]
Aravinda, L.S.; Bhat, U. K.; Bhat, B. R. Mater. Lett. 2013, 112, 158.
[32]
Xu, J. H.; Wu, L.; Liu, Y.; Liu, J. M.; Shu, S. S.; Yang, Y. X.; Kang, X.; Hu, Y. Key Eng. Mater. 2020, 842, 76.
[33]
Wu, W. J.; Qi, W. T.; Zhao, Y. F.; Tang, X.; Qiu, Y. F.; Su, D. W.; Fan, H. B.; Wang, G. X. Appl. Surf. Sci. 2019, 463, 244.
[34]
Jiao, Y. Ph.D. Dissertation, Harbin Institute of Technology, Harbin, 2019. (in Chinese)
[34]
( 焦杨, 博士论文, 哈尔滨工业大学, 哈尔滨, 2019.)
Outlines

/