Perspective

Research Progress on EWG-Substituted N-Arylsulfonylhydrazones as the Diazo Compound Precursor

  • Yeming Wang ,
  • Hongwei Wang ,
  • Zhaohong Liu
Expand
  • a Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, China
    b School of Chemistry, Northeast Normal University, Changchun 130024, China

Received date: 2021-04-26

  Online published: 2021-08-04

Supported by

Department of Science and Technology of Jilin Province(20200801065GH); Fundamental Research Funds for the Central Universities(2412020ZD003); Doctoral Research Initiation Fund Project of Jilin Engineering Normal University(BSKJ201921)

Abstract

N-arylsulfonyl hydrazones were a kind of stable diazo surrogates in organic synthesis. Among them, N-tosylhydrazones occupied main position in the research of carbene chemistry, and many reactions involving N-tosylhydrazones and reviews were published. In recent years, the chemical reactions involving electron-withdrawing groups (EWG)-substituted N-arylsulfonylhydrazones as milder diazo surrogates have been developed rapidly. However, these reactions were not summarized. Therefore, this review focuses on the research progress on EWG-substituted N-arylsulfonylhydrazones used as diazo surrogates in organic synthesis reactions, and emphasized the coupling, cyclization, insertion, multicomponent and Doyle-Kirmse reaction involved N-o-nitrobenzenesulfonylhydrazides and N-o-triftosylhydrazones.

Cite this article

Yeming Wang , Hongwei Wang , Zhaohong Liu . Research Progress on EWG-Substituted N-Arylsulfonylhydrazones as the Diazo Compound Precursor[J]. Acta Chimica Sinica, 2021 , 79(9) : 1085 -1096 . DOI: 10.6023/A21040179

References

[1]
Bamford, W. R.; Stevens, T. S. J. Chem. Soc. 1952, 4735.
[2]
(a) Shapiro, R. H.; Heath, M. J. J. Am. Chem. Soc. 1967, 89, 5734.
[2]
(b) Shapiro, R. H. Org. React. 1976, 23, 405.
[2]
(c) Adlington, R. M.; Barrett, A. G. M. Acc. Chem. Res. 1983, 16, 55.
[3]
Xu, K.; Shen, C.; Sheng, W.; Shan, S.; Jia, Y. Chin. J. Org. Chem. 2015, 35, 633. (in Chinese)
[3]
( 许恺, 沈冲, 盛卫坚, 单尚, 贾义霞, 有机化学, 2015, 35, 633.)
[4]
(a) Qiu, D.; Qiu, M.; Ma, R.; Zhang, Y.; Wang, J. Acta Chim. Sinica 2016, 74, 472. (in Chinese)
[4]
( 邱頔, 邱孟龙, 马戎, 张艳, 王剑波, 化学学报, 2016, 74, 472.)
[4]
(b) Gao, Y.; Wang, J. Chin. J. Org. Chem. 2018, 38, 1275. (in Chinese)
[4]
( 郜云鹏, 王剑波, 有机化学, 2018, 38, 1275.)
[5]
Fulton, J. R.; Aggarwal, V. K.; de Vicente, J. Eur. J. Org. Chem. 2005, 2005, 1479.
[6]
Barluenga, J.; Valdés, C. Angew. Chem. Int. Ed. 2011, 50, 7486.
[7]
Shao, Z.; Zhang, H. Chem. Soc. Rev. 2012, 41, 560.
[8]
Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236.
[9]
Liu, Z.; Zhang, Y.; Wang, J. Chin. J. Org. Chem. 2013, 33, 687. (in Chinese)
[9]
( 刘振兴, 张艳, 王剑波, 有机化学, 2013, 33, 687.)
[10]
Xu, K.; Shen, C.; Shan, S. Chin. J. Org. Chem. 2015, 35, 294. (in Chinese)
[10]
( 许恺, 沈冲, 单尚, 有机化学, 2015, 35, 294.)
[11]
Xia, Y.; Wang, J. Chem. Soc. Rev. 2017, 46, 2306.
[12]
Arunprasath, D.; Bala, B. D.; Sekar, G. Adv. Syn. Cat. 2019, 361, 1172.
[13]
Xia, Y.; Wang, J. J. Am. Chem. Soc. 2020, 142, 10592.
[14]
Claudio Battilocchio, C.; Feist, F.; Hafner, A.; Simon, M.; Tran, D. N.; Allwood, D. M.; Blakemore, D. C.; Ley, S. V. Nat. Chem. 2016, 8, 360.
[15]
Feng, J.; Li, B.; He, Y.; Gu, Z. Angew. Chem. Int. Ed. 2016, 55, 2186.
[16]
Reddy, A. R.; Hao, F.; Wu, K.; Zhou, C.-Y.; Che, C. -M. Angew. Chem. Int. Ed. 2016, 55, 1810.
[17]
Farnum, D. G. J. Org. Chem. 1963, 28, 870.
[18]
Liu, Z.; Liao, P.; Bi, X. Chem. Eur. J. 2014, 20, 17277.
[19]
Liu, Z.; Babu, K. R.; Wang, F.; Yang, Y.; Bi, X. Org. Chem. Front. 2019, 6, 121.
[20]
Barluenga, J.; Moriel, P.; Valdés, C.; Aznar, F. Angew. Chem., Int. Ed. 2007, 46, 5587.
[21]
Tan, H.; Houpis, I.; Liu, R.; Wang, Y.; Chen, Z.; Fleming, M. J. Org. Process Res. Dev. 2015, 19, 1044.
[22]
Liu, Z.; Liu, B.; Zhao, X.-F.; Wu, Y.-B.; Bi, X. Eur. J. Org. Chem. 2017, 2017, 928.
[23]
Merchant, R. R.; Lopez, J. A. Org. Lett. 2020, 22, 2271.
[24]
(a) Bowling, N. P.; Halter, R. J.; Hodges, J. A.; Seburg, R. A.; Thomas, P. S.; Simmons, C. S.; Stanton, J. F.; McMahon, R. J. J. Am. Chem. Soc. 2006, 128, 3291.
[24]
(b) Bowling, N. P.; Burrmann, N. J.; Halter, R. J.; Hodges, J. A.; McMohan, R. J. J. Org. Chem. 2010, 75, 6382.
[24]
(c) Seburg, R. A.; Hodges, J. A.; McMahon, R. J. Helv. Chim. Acta 2009, 92, 1626.
[25]
Yang, Y.; Liu, Z.; Porta, A.; Zanoni, G.; Bi, X. Chem. Eur. J. 2017, 23, 9009.
[26]
Liu, T.; Liu, Z.; Liu, Z.; Hu, D.; Wang, Y. Synthesis 2018, 50, 1728.
[27]
Zhang, Y.-H.; Wub, M.-Y.; Huang, W.-C. RSC Adv. 2015, 5, 105825.
[28]
Zhang, X.; Liu, Z.; Yang, X.; Dong, Y.; Virelli, M.; Zanoni, G.; Anderson, E. A.; Bi, X. Nat. Commun. 2019, 10, 284.
[29]
Ma, Y.; Reddy, B. R. P.; Bi, X. Org. Lett. 2019, 21, 9860.
[30]
Liu, Z.; Cao, S.; Wu, J.; Zanoni, G.; Sivaguru, P.; Bi, X. ACS Catal. 2020, 10, 12881.
[31]
(a) Talele, T. T. J. Med. Chem. 2016, 59, 8712.
[31]
(b) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845.
[32]
(a) Allouche, E. M. D.; Charette, A. B. Synthesis 2019, 51, 3947.
[32]
(b) Li, P.; Zhang, X.; Shi, M. Chem. Commun. 2020, 56, 5457.
[33]
Wu, Y.; Cao, S.; Douair, I.; Maron, L.; Bi, X. Chem. Eur. J. 2021, 27, 5999.
[34]
(a) Majchrzak, M. W.; Bekhazi, M.; Tse-Sheepy, I.; Warkentin, J. J. Org. Chem. 1989, 54, 1842.
[34]
(b) Chuprakov, S.; Gevorgyan, V. Org. Lett. 2007, 9, 4463.
[34]
(c) Angew. Chem. Int. Ed. 2010, 49, 4294.
[34]
(d) Barroso, R.; Jiménez, A.; Pérez-Aguilar, M. C.; Cabal, M.; Valdés, C. Chem. Commun. 2016, 52, 3677.
[35]
Liu, Z.; Li, Q.; Liao, P.; Bi, X. Chem.-Eur. J. 2017, 23, 4756.
[36]
Briones, J. F.; Davies, H. M. L. Org. Lett. 2011, 13, 3984.
[37]
Hossain, M. L.; Ye, F.; Zhang, Y.; Wang, J. J. Org. Chem. 2013, 78, 1236.
[38]
Liu, Z.; Zhang, X.; Zanoni, G.; Bi, X. Org. Lett. 2017, 19, 6646.
[39]
Allouche, E. M. D.; Al-Saleh, A.; Charette, A. B. Chem. Commun. 2018, 54, 13256.
[40]
Ning, Y.; Zhang, X.; Gai, Y.; Dong, Y.; Sivaguru, P.; Wang, Y.; Reddy, B. R. P.; Zanoni, G.; Bi, X. Angew. Chem. Int. Ed. 2020, 59, 6473.
[41]
Liu, T.-X.; Ma, J.; Chao, D.; Zhang, P.; Liu, Q.; Shi, L.; Zhang, Z.; Zhang, G. Chem. Commun. 2015, 51, 12775.
[42]
Wang, Q.; He, L.; Li, K. K.; Tsui, G. C. Org. Lett. 2017, 19, 658.
[43]
Wang, H.; Ning, Y.; Sun, Y.; Sivaguru, P.; Bi, X. Org. Lett. 2020, 22, 2012.
[44]
Liu, Z.; Li, Q.; Yang, Y.; Bi, X. Chem. Commun. 2017, 53, 2503.
[45]
(a) Davies, H. M. L.; Liao, K. Nat. Rev. Chem. 2019, 3, 347.
[45]
(b) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
[45]
(c) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417.
[46]
Liu, Z.; Cao, S.; Yu, W.; Yi, F.; Anderson, E. A.; Bi, X. Chem 2020, 6, 2110.
[47]
Xia, Y.; Liu, Z.; Liu, Z.; Ge, R.; Ye, F.; Hossain, M.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2014, 136, 3013.
[48]
Liu, Z.; Sivaguru, P.; Zanoni, G.; Anderson, E. A.; Bi, X. Angew. Chem. Int. Ed. 2018, 57, 8927.
[49]
Liu, Z.; Zhang, X.; Virelli, M.; Zanoni, G.; Anderson, E. A.; Bi, X. iScience 2018, 8, 54.
[50]
Chao, D.; Liu, T.-X.; Ma, N.; Zhang, P.; Fu, Z.; Ma, J.; Liu, Q.; Zhang, F.; Zhang, Z.; Zhang, G. Chem. Commun. 2016, 52, 982.
[51]
Kirmse, W.; Kapps, M. Chem. Ber. 1968, 101, 994.
[52]
Doyle, M. P.; Tamblyn, W. H.; Bagheri, V. J. Org. Chem. 1981, 46, 5094.
[53]
Selected examples: (a) Lin, X.; Tang, Y.; Yang, W.; Tan, F.; Lin, L.; Liu, X.; Feng, X. J. Am. Chem. Soc. 2018, 140, 3299.
[53]
(b) Zhang, Z.; Sheng, Z.; Yu, W.; Wu, G.; Zhang, R.; Chu, W.-D.; Zhang, Y.; Wang, J. Nat. Chem. 2017, 9, 970.
[53]
(c) Xu, B.; Tambar, U. K. J. Am. Chem. Soc. 2016, 138, 12073.
[53]
(d) Xu, B.; Tambar, U. K. Angew. Chem. Int. Ed. 2017, 56, 9868.
[53]
(e) Hock, K. J.; Mertens, L.; Hommelsheim, R.; Spitznera, R.; Koenigs, R. M. Chem. Commun. 2017, 53, 6577.
Outlines

/