Article

Mechanism of Silyl Enol Ethers Hydrogenation Catalysed by Frustrated Lewis Pairs: A Theoretical Study

  • Yinghui Wang ,
  • Simin Wei ,
  • Jinwei Duan ,
  • Kang Wang
Expand
  • a College of Science, Chang'an University, Xi'an 710064, China
    b Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China

Received date: 2021-05-28

  Online published: 2021-08-10

Supported by

National Natural Science Foundation of China(21705029); National Natural Science Foundation of China(21804066); Young Talent Fund of University Association for Science and Technology in Shaanxi, China(20190307); Natural Science Foundation of Shaanxi Province(2021JQ-221); Fundamental Research Funds for the Central Universities, CHD(300102120303); Special Scientific Research Plan of Education Department of Shaanxi Province(19JK0233)

Abstract

Silyl enol ethers have attracted enormous attention as they could serve as a test bed for the development of novel frustrated Lewis pairs (FLPs) catalytic systems. However, the reaction mechanism of hydrogenation catalysed by metal-free FLPs for these compounds to the corresponding secondary alcohols remains elusive to a large extent in previous studies. We thus performed a thorough investigation on the reaction mechanism by density functional theory (DFT). To illustrate the reaction mechanism of FLPs-catalysed hydrogenation for silyl enol ethers, trimethyl((1-phenylvinyl)oxy)silane (Me-TMS) was chosen as the prototype substrate and toluene as the solvent, where the FLPs were generated by ethylbis(perfluorophenyl)- borane (Et-B(C6F5)2) and tri-tert-butylphosphine (t-Bu3P). The M06-2X functional in connection with 6-31+G(d) basis set was used to optimize the structures of related species including in the Gibbs free energy profiles, and the energies were obtained at M06-2X/6-311++G(d,p) level of theory, where the solvent effect was simulated with the integral equation formalism, polarized continuum mode (IEF-PCM) in both calculations. Our results suggest that the FLPs-catalysed hydrogenation of silyl enol ethers in toluene begins with the formation of B-P-FLPs followed by hydrogen activation, proton transfer and hydride transfer to complete the process. It is obvious from the Gibbs free energy profile that the proton transfer is rate-determining step, the formation of B-P-FLPs and proton transfer are endothermal and the hydride transfer is no barrier. This indicates that the amount of H2 and prototype substrate have significant influence on the FLPs-catalysed hydrogenation of silyl enol ethers. A higher temperature (328.15 K) is disadvantageous to hydrogenation reaction catalysed by FLPs but the reaction could be accelerated under higher pressure (4040 kPa). The Gibbs free energy profile calculations for trimethyl((1-phenylprop-1-en-1-yl)oxy)silane (Et-TMS) and tert-butyldimethyl((1-phenylvinyl)oxy)silane (Me-TBS) reveal that substituent group may inhibit the hydride transfer as the absence of a suitable construction for R-H-transfer, where the hydride does not direct to the C+ of silyl enol ethers and the distance between C+ and hydride is longer. These results would be helpful to design another novel FLPs-catalysed hydrogenation reaction for silyl enol ethers.

Cite this article

Yinghui Wang , Simin Wei , Jinwei Duan , Kang Wang . Mechanism of Silyl Enol Ethers Hydrogenation Catalysed by Frustrated Lewis Pairs: A Theoretical Study[J]. Acta Chimica Sinica, 2021 , 79(9) : 1164 -1172 . DOI: 10.6023/A21050236

References

[1]
Liu, W. P.; Sahoo, B.; Junge, K.; Beller, M. Acc. Chem. Res. 2018, 51, 1858.
[2]
Wang, Q. Y.; Santos, S.; Urbina-Blanco, C. A.; Hernandez, W. Y.; Imperor-Clerc, M.; Vovk, E. I.; Marinova, M.; Ersen, O.; Baaziz, W.; Safonova, O. V.; Khodakov, A. Y.; Saeys, M.; Ordomsky, V. V. Appl. Catal. B-Environ. 2021, 290, 120036.
[3]
Chen, S. N.; Deng, J.; Ye, C.; Xu, C. C.; Huai, L. Y.; Ling, X.; Li, J.; Li, X. Y. Chem. Eng. J. 2021, 410, 128825.
[4]
Wang, W. L.; Niu, J. F.; Yang, Z. F. J. Hazard. Mater. 2021, 411, 121912.
[5]
Ye, R. P.; Lin, L.; Li, Q. H.; Zhou, Z. F.; Wang, T. T.; Russell, C. K.; Adidharma, H.; Xu, Z. H.; Yao, Y. G.; Fan, M. H. Catal. Sci. Technol. 2018, 8, 3428.
[6]
Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Appl. Catal. B-Environ. 2018, 227, 386.
[7]
Schreier, M. R.; Pfund, B.; Guo, X. W.; Wenger, O. S. Chem. Sci. 2020, 11, 8582.
[8]
Lux, S.; Baldauf-Sommerbauer, G.; Siebenhofer, M. ChemSusChem 2018, 11, 3357.
[9]
Meemken, F.; Baiker, A. Chem. Rev. 2017, 117, 11522.
[10]
Hu, S. B.; Chen, M. W.; Zhai, X. Y.; Zhou, Y. G. Acta Chim. Sinica 2018, 76, 103. (in Chinese)
[10]
( 胡书博, 陈木旺, 翟小勇, 周永贵, 化学学报, 2018, 76, 103.)
[11]
Liu, X.; Han, Z. B.; Wang, Z.; Ding, K. L. Acta Chim. Sinica 2014, 72, 849. (in Chinese)
[11]
( 刘旭, 韩召斌, 王正, 丁奎岭, 化学学报, 2014, 72, 849.)
[12]
Liu, Y. B.; Du, H. F. Acta Chim. Sinica 2014, 72, 771. (in Chinese)
[12]
( 刘勇兵, 杜海峰, 化学学报, 2014, 72, 771.)
[13]
Meemken, F.; Rodriguez-Garcia, L. J. Phys. Chem. Lett. 2018, 9, 996.
[14]
Xie, J. H.; Zhou, Q. L. Acta Chim. Sinica 2012, 70, 1427. (in Chinese)
[14]
( 谢建华, 周其林, 化学学报, 2012, 70, 1427.)
[15]
Zhang, Q.; Liu, A.; Yu, H. Z.; Fu, Y. Acta Chim. Sinica 2018, 76, 113. (in Chinese)
[15]
( 张琪, 刘奥, 于海珠, 傅尧, 化学学报, 2018, 76, 113.)
[16]
Schauermann, S. J. Phys. Chem. Lett. 2018, 9, 5555.
[17]
Bai, Y. P.; Cui, C. M. Acta Chim. Sinica 2020, 78, 763. (in Chinese)
[17]
( 白云平, 崔春明, 化学学报, 2020, 78, 763.)
[18]
Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.
[19]
Stephan, D. W. Acc. Chem. Res. 2015, 48, 306.
[20]
Mömming, C. M.; Frömel, S.; Kehr, G.; Fröhlich, R.; Grimme, S.; Erker, G. J. Am. Chem. Soc. 2009, 131, 12280.
[21]
Mahdi, T.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 15809.
[22]
Mahdi, T.; Heiden, Z. M.; Grimme, S.; Stephan, D. W. J. Am. Chem. Soc. 2012, 134, 4088.
[23]
Zhang, Z.; Du, H. Angew. Chem. Int. Ed. 2015, 54, 623.
[24]
Zhang, Z. H.; Du, H. F. Org. Lett. 2015, 17, 6266.
[25]
Wei, S. M.; Feng, X. Q.; Du, H. F. Org. Biomol. Chem. 2016, 14, 8026.
[26]
Wei, S. M.; Du, H. F. J. Am. Chem. Soc. 2014, 136, 12261.
[27]
Liu, Y. B.; Du, H. F. J. Am. Chem. Soc. 2013, 135, 6810.
[28]
Liu, Y. B.; Du, H. F. J. Am. Chem. Soc. 2013, 135, 12968.
[29]
Lu, Z. P.; Cheng, Z. H.; Chen, Z. X.; Weng, L. H.; Li, Z. H.; Wang, H. D. Angew. Chem.-Int. Ed. 2011, 50, 12227.
[30]
Liu, Q.; Yang, L.; Yao, C.; Geng, J.; Wu, Y.; Hu, X. Org. Lett. 2021, 23, 3685.
[31]
Rouf, A. M.; Huang, Y.; Dong, S.; Zhu, J. Inorg. Chem. 2021, 60, 5598.
[32]
Wang, H. L.; Zhang, W. N.; Lu, L.; Liu, D. P.; Liu, D. D.; Li, T. Z.; Yan, S. C.; Zhao, S. Q.; Zou, Z. G. Appl. Catal. B-Environ. 2021, 283, 119639.
[33]
Szynkiewicz, N.; Chojnacki, J.; Grubba, R. Inorg. Chem. 2020, 59, 6332.
[34]
Adenot, A.; von Wolff, N.; Lefevre, G.; Berthet, J. C.; Thuery, P.; Cantat, T. Chem.-Eur. J. 2019, 25, 8118.
[35]
Kehr, G.; Erker, G. Chem. Rec. 2017, 17, 803.
[36]
Wang, H. D.; Frohlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2008, 5966.
[37]
Greb, L.; Ona-Burgos, P.; Kubas, A.; Falk, F. C.; Breher, F.; Fink, K.; Paradies, J. Dalton Trans. 2012, 41, 9056.
[38]
Ren, X. Y.; Du, H. F. J. Am. Chem. Soc. 2016, 138, 810.
[39]
Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
[40]
Wang, Y. H.; Jie, J. L.; Zhao, H. M.; Bai, Y.; Qin, P. X.; Song, D. Acta Chim. Sinica 2018, 76, 475. (in Chinese)
[40]
( 王英辉, 节家龙, 赵红梅, 白羽, 秦佩萱, 宋迪, 化学学报, 2018, 76, 475.)
[41]
Wei, S.; Zhang, Z.; Liu, S.; Wang, Y. New J. Chem. 2021, 45, 11202.
[42]
Huang, F.; Jiang, J. L.; Wen, M. W.; Wang, Z. X. J. Theor. Comput. Chem. 2014, 13, 1350074.
[43]
Wang, Y. H.; Wei, S. M.; Wang, K.; Xu, R. R.; Zhao, H. M. Acta Chim. Sinica 2020, 78, 271. (in Chinese)
[43]
( 王英辉, 魏思敏, 王康, 徐蓉蓉, 赵红梅, 化学学报, 2020, 78, 271.)
[44]
Zhao, J. Y.; Wang, G. Q.; Li, S. H. Dalton Trans. 2015, 44, 9200.
[45]
Rokob, T. A.; Hamza, A.; Stirling, A.; Pápai, I. J. Am. Chem. Soc. 2009, 131, 2029.
[46]
Antinolo, A.; Carrillo-Hermosilla, F.; Fernandez-Galan, R.; Martinez-Ferrer, J.; Alonso-Moreno, C.; Bravo, I.; Moreno-Blazquez, S.; Salgado, M.; Villasenor, E.; Albaladejo, J. Dalton Trans. 2016, 45, 10717.
[47]
Zhao, L.; Li, H.; Lu, G.; Huang, F.; Zhang, C.; Wang, Z.-X. Dalton Trans. 2011, 40, 1929.
[48]
Rokob, T. A.; Hamza, A.; Papai, I. J. Am. Chem. Soc. 2009, 131, 10701.
[49]
Wei, S. M.; Wang, Y. H.; Zhao, H. M. Acta Chim. Sinica 2019, 77, 278. (in Chinese)
[49]
( 魏思敏, 王英辉, 赵红梅, 化学学报, 2019, 77, 278.)
[50]
Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032.
[51]
Das, S.; Pati, S. K. Chem.-Eur. J. 2017, 23, 1078.
[52]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Ha-segawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 16, Revision A. 03, Gaussian, Inc., Wallingford, CT, 2016.
Outlines

/