Review

Recent Progress on Chemical Species of Uranium in Molten Chlorides

  • Yichuan Liu ,
  • Yalan Liu ,
  • Shilin Jiang ,
  • Mei Li ,
  • Weiqun Shi
Expand
  • a College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
    b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
; Tel.: 010-88233989; Fax: 010-88235294

Received date: 2021-07-23

  Online published: 2021-09-14

Supported by

National Science Fund for Distinguished Young Scholars(21925603); Major Program of the National Natural Science Foundation of China(21790373); National Natural Science Foundation of China(U20B2020)

Abstract

High-temperature molten salt electrolysis based pyrochemical reprocessing of spent nuclear fuel has certain advantages for advanced nuclear fuel cycle, which is usually carried out in a high-temperature chloride molten salt system, and actinides (Ans) are recovered and separated over lanthanides (Lns) via electrolysis in molten salt. Among them, the separation and recovery of uranium from fission products (FPs) is one of the key tasks. To optimize the separation process, it is necessary to deeply understand the relationship between electrochemical properties and chemical species of uranium in molten salt. Hence, it is very important to carry out the study of the chemical species of uranium in molten chlorides. In this review, the research progresses on chemical species of uranium in molten chlorides have been summarized and sorted. In addition, future perspectives upon actinide chemical species in molten salt have been given.

Cite this article

Yichuan Liu , Yalan Liu , Shilin Jiang , Mei Li , Weiqun Shi . Recent Progress on Chemical Species of Uranium in Molten Chlorides[J]. Acta Chimica Sinica, 2021 , 79(12) : 1425 -1437 . DOI: 10.6023/A21070341

References

[1]
Glatz, J. P.; Malmbeck, R.; Souček, P.; Claux, B.; Meier, R.; Ougier, M.; Murakami, T. Molten Salts Chemistry, Elsevier, Amsterdam, 2013, pp. 541-560.
[2]
Inoue, T.; Koch, L. Nucl. Eng. Technol. 2008, 40, 183.
[3]
Hoover, R. O.; Shaltry, M. R.; Martin, S.; Sridharan, K.; Phongikaroon, S. J. Nucl. Mater. 2014, 452, 389.
[4]
Salanne, M.; Simon, C.; Turq, P.; Madden, P. A. J. Phys. Chem. B 2008, 112, 1177.
[5]
Masset, P.; Bottomley, D.; Konings, R.; Malmbeck, R.; Rodrigues, A.; Serp, J.; Glatz, J.-P. J. Electrochem. Soc. 2005, 152, A1109.
[6]
Shirai, O.; Iwai, T.; Suzuki, Y.; Sakamura, Y.; Tanaka, H. J. Alloys Compd. 1998, 271, 685.
[7]
Yin, T.; Liu, K.; Liu, Y.; Yan, Y.; Wang, G.; Chai, Z.; Shi, W. J. Electrochem. Soc. 2018, 165, D722.
[8]
Yang, D. W.; Liu, Y. L.; Yin, T. Q.; Jiang, S. L.; Zhong, Y. K.; Wang, L.; Li, M.; Chai, Z. F.; Shi, W. Q. Electrochim. Acta 2020, 353, 136449.
[9]
Salanne, M.; Simon, C.; Turq, P.; Ohtori, N.; Madden, P. A. Molten Salts Chemistry, Elsevier, Amsterdam, 2013, pp. 1-16.
[10]
Li, X.; Song, J.; Shi, S.; Yan, L.; Zhang, Z.; Jiang, T.; Peng, S. J. Phys. Chem. A 2017, 121, 571.
[11]
Kwon, C.; Kang, J.; Han, B. Int. J. Energ. Res. 2016, 40, 1381.
[12]
Dai, S.; Toth, L. M.; Del Cul, G. D.; Metcalf, D. H. J. Phys. Chem. 1996, 100, 220.
[13]
Polovov, I. B.; Volkovich, V. A.; Charnock, J. M.; Kralj, B.; Lewin, R. G.; Kinoshita, H.; May, I.; Sharrad, C. A. Inorg. Chem. 2008, 47, 7474.
[14]
Volkovich, V. A.; Bhatt, A. I.; May, I.; Griffiths, T. R.; Thied, R. C. J. Nucl. Sci. Technol. 2014, 39, 595.
[15]
Nagai, T.; Uehara, A.; Fujii, T.; Shirai, O.; Sato, N.; Yamana, H. J. Nucl. Sci. Technol. 2005, 42, 1025.
[16]
May, I. ECS Proceedings Volumes, 2004, 2004-24, 814.
[17]
Volkovich, V. A.; May, I.; Griffiths, T. R.; Charnock, J. M.; Bhatt, A. I.; Lewin, B. J. Nucl. Mater. 2005, 344, 100.
[18]
Volkovich, V. A.; Aleksandrov, D. E.; Vasin, B. D.; Khabibullin, T. K.; Polovov, I. B.; Griffiths, T. R. ECS Trans. 2009, 16, 325.
[19]
Nagai, T.; Fujii, T.; Shirai, O.; Yamana, H. J. Nucl. Sci. Technol. 2004, 41, 690.
[20]
Fujii, T.; Moriyama, H.; Yamana, H. J. Alloys Compd. 2003, 351, L6.
[21]
Fujii, T.; Nagai, T.; Sato, N.; Shirai, O.; Yamana, H. J. Alloys Compd. 2005, 393, L1.
[22]
Fujii, T.; Nagai, T.; Uehara, A.; Yamana, H. J. Alloys Compd. 2007, 441, L10.
[23]
Kim, T. J.; Jeong, Y. K.; Kang, J. G.; Jung, Y.; Ahn, D. H.; Lee, H. S. J. Radioanal. Nucl. Chem. 2010, 286, 283.
[24]
Volkovich, V. A.; Polovov, I. B.; Vasin, B. D.; Griffiths, T. R.; Sharrad, C. A.; May, I.; Charnock, J. M. Zeitschrift für Naturforschung A 2007, 62, 671.
[25]
Fujii, T.; Uda, T.; Iwadate, Y.; Nagai, T.; Uehara, A.; Yamana, H. J. Nucl. Mater. 2013, 440, 575.
[26]
Preetz, W.; Ruf, D.; Tensfeldt, D. Zeitschrift für Naturforschung B 1984, 39, 1100.
[27]
Kwon, C.; Kang, J.; Kang, W.; Kwak, D.; Han, B. Electrochim. Acta 2016, 195, 216.
[28]
Till, C.; Chang, Y.; Hannum, W. Prog. Nucl. Energ. 1997, 31, 3.
[29]
Karell, E. J.; Gourishankar, K. V.; Smith, J. L.; Chow, L. S.; Redey, L. Nucl. Technol. 2001, 136, 342.
[30]
Simpson, M. F. Developments of spent nuclear fuel pyroprocessing technology at Idaho National Laboratory, Idaho National Laboratory (INL), 2012.
[31]
Gruen, D.; McBeth, R. J. Inorg. Nucl. Chem. 1959, 9, 290.
[32]
Wenz, D. A.; Adams, M. D.; Steunenberg, R. K. Inorg. Chem. 1964, 3, 989.
[33]
Adams, M.; Wenz, D.; Steunenberg, R. J. Phys. Chem. 1963, 67, 1939.
[34]
Li, B.; Dai, S.; Jiang, D. E. ACS Appl. Energ. Mater. 2019, 2, 2122.
[35]
Li, B.; Dai, S.; Jiang, D. E. J. Mol. Liq. 2020, 299, 112184.
[36]
Wu, F.; Roy, S.; Ivanov, A. S.; Gill, S. K.; Topsakal, M.; Dooryhee, E.; Abeykoon, M.; Kwon, G.; Gallington, L. C.; Halstenberg, P.; Layne, B.; Ishii, Y.; Mahurin, S. M.; Dai, S.; Bryantsev, V. S.; Margulis, C. J. J. Phys. Chem. Lett. 2019, 10, 7603.
[37]
Okamoto, Y.; Kobayashi, F.; Ogawa, T. J. Alloys Compd. 1998, 271, 355.
[38]
Okamoto, Y.; Madden, P. A.; Minato, K. J. Nucl. Mater. 2005, 344, 109.
[39]
Okamoto, Y.; Akabori, M.; Itoh, A.; Ogawa, T. J. Nucl. Sci. Technol. 2014, 39, 638.
[40]
In ACTINIDES 2009, IOP Conference Series: Materials Science and Engineering, Vol. 9, Eds.: Rao, L.; Tobin, J. G.; Shuh, D. K., IOP publishing, Bristol, 2010, p. 012050.
[41]
Fujii, T.; Uehara, A.; Nagai, T.; Kim, T.-J.; Sato, N.; Sakamura, Y.; Yamana, H. Electrochemistry 2009, 77, 667.
[42]
Nagai, T.; Uehara, A.; Fujii, T.; Sato, N.; Yamana, H. J. Nucl. Mater. 2011, 414, 226.
[43]
Nagai, T.; Uehara, A.; Fujii, T.; Yamana, H. J. Nucl. Mater. 2013, 439, 1.
[44]
Fujii, T. KURRI Progress Report 2016, 2015(APRIL 2015-MARCH 2016), 24.
[45]
Choi, E. Y.; Jeon, M. K.; Hur, J.-M. J. Radioanal. Nucl. Chem. 2017, 314, 207.
[46]
Choi, E. Y.; Lee, J. J. Nucl. Mater. 2017, 494, 439.
[47]
Choi, E. Y.; Lee, J.; Heo, D. H.; Lee, S. K.; Jeon, M. K.; Hong, S. S.; Kim, S. W.; Kang, H. W.; Jeon, S. C.; Hur, J. M. J. Nucl. Mater. 2017, 489, 1.
[48]
Cho, Y. H.; Bae, S. E.; Kim, D. H.; Park, T. H.; Kim, J. Y.; Song, K.; Yeon, J. W. Microchem. J. 2015, 122, 33.
[49]
Park, Y. J.; Bae, S. E.; Cho, Y. H.; Kim, J. Y.; Song, K. Microchem. J. 2011, 99, 170.
[50]
Cho, Y. H.; Bae, S. E.; Park, Y. J.; Oh, S. Y.; Kim, J. Y.; Song, K. Microchem. J. 2012, 102, 18.
[51]
Volkovich, V. A.; Griffiths, T. R.; Fray, D. J.; Thied, R. C. Phys. Chem. Chem. Phys. 2000, 2, 3871.
[52]
Bhatt, A. I.; du Fou de Kerdaniel, E.; Kinoshita, H.; Livens, F. R.; May, I.; Polovov, I. B.; Sharrad, C. A.; Volkovich, V. A.; Charnock, J. M.; Lewin, R. G. Inorg. Chem. 2005, 44, 2.
[53]
Volkovich, V.; Aleksandrov, D.; Maltsev, D.; Vasin, B.; Polovov, I.; Griffiths, T. Molten Salts Chemistry and Technology, John Wiley & Sons, New Jersey, 2014, pp. 507-520.
[54]
Volkovich, V. A.; Aleksandrov, D. E.; Griffiths, T. R.; Vasin, B. D.; Khabibullin, T. K.; Maltsev, D. S. Pure Appl. Chem. 2010, 82, 1701.
[55]
Volkovich, V. A.; Aleksandrov, D. E.; Vasin, B. D.; Maltsev, D. S.; Griffiths, T. R. ECS Trans. 2010, 33, 371.
[56]
Polovov, I. B.; Sharrad, C. A.; May, I.; Vasin, B. D.; Volkovich, V. A.; Griffiths, T. R. ECS Trans. 2007, 3, 503.
[57]
Jiang, T.; Wang, N.; Peng, S.; Yan, L. Chem. Res. Chin. Univ. 2015, 31, 281.
[58]
Liu, Y. L.; Yuan, L. Y.; Zheng, L. R.; Wang, L.; Yao, B. L.; Chai, Z. F.; Shi, W. Q. Electrochem. Commun. 2019, 103, 55.
[59]
Song, J.; Shi, S.; Li, X.; Yan, L. J. Mol. Liq. 2017, 234, 279.
[60]
Liu, Y. L.; Luo, L. X.; Liu, N.; Yao, B. L.; Liu, K.; Yuan, L. Y.; Chai, Z. F.; Shi, W. Q. J. Nucl. Mater. 2018, 508, 63.
[61]
Liu, Y. C.; Liu, Y. L.; Wang L.; Zhong Y. K.; Li M.; Han W.; Zhao Y.; Zhou T.; Zou Q.; Zeng X.; Shi W. Q. J. Nucl. Mater. 2020, 542, 152475.
[62]
Liu Y. C.; Liu Y. L.; Zhao Y.; Liu Z.; Zhou T.; Zou Q.; Zeng X.; Zhong Y. K.; Li M.; Sun Z. X.; Shi W. Q. J. Nucl. Mater. 2020, 532, 152049.
Outlines

/