Review

Coordination Polymerization of α,ω-Diolefin: the Regulation of Polymer Microstructure by Catalyst

  • Yong Li ,
  • Xiao-Yan Wang ,
  • Yong Tang
Expand
  • State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Received date: 2021-08-12

  Online published: 2021-09-24

Supported by

Youth Innovation Promotion Association CAS(2020259); National Natural Science Foundation of China(21901253); National Natural Science Foundation of China(21690072); Shanghai Rising-Star Program(21QA1411200)

Abstract

In the past decades, the polyolefin industry has been booming, and the synthesis of polyolefin with unique structure and property has been the constant pursuit of polymer chemists. Until now, scientists have been able to synthesize various polyolefins by regulating monomer structure, catalyst central metal, ligand structure and polymerization conditions. Among the various polyolefins, those with aliphatic rings in the main chain have been widely concerned because of their excellent thermal stability and transparency. The coordination polymerization of α,ω-diolefin is a very efficient approach to obtain polymers containing aliphatic rings in backbone. This method has some advantages, such as easy availability and modification of monomers, and the effective regulation of polymer microstructure by catalysts. Polymers with pendant double bonds or aliphatic rings or crosslinked gel can be obtained according to the different double bond that inserts into the intermediate generating after the first insertion reaction. According to the relative orientation of two branched chains in the ring, the polymers are divided into cis and trans isomers. By the relative configuration of the rings, there are isotactic and syndiotactic structures. Due to the 1,2-insertion or 2,1-insertion of the first insertion reaction between the catalyst and the monomer, the resultant polymers contain ring units with monomethylene or dimethylene. Under the catalyzation of complexes with different absolute configurations, chiral polymers with the same optical rotation and opposite direction can be obtained. The microstructure of these polymers should have a significant influence on their aggregation state, thermodynamics and mechanical properties, which can be finely regulated by changing the central metal and ligand structure of the catalyst. This review focuses on the microstructure of polymers of α,ω-diolefins, and emphatically introduces how to regulate the polymer structure by varying the catalyst structure. Besides, the possible development direction of this field is predicted, so as to promote the rapid development of structure-performance relationship and practical application of these polymers.

Cite this article

Yong Li , Xiao-Yan Wang , Yong Tang . Coordination Polymerization of α,ω-Diolefin: the Regulation of Polymer Microstructure by Catalyst[J]. Acta Chimica Sinica, 2021 , 79(11) : 1320 -1330 . DOI: 10.6023/A21080377

References

[1]
(a) Ziegler K.; Breil H.; Holzkamp E.; Martin H. DE 973626, 1953.
[1]
(b) Natta G.; Mitarbb U. Angew. Chem. 1955, 67, 431.
[2]
Marvel C. S.; Stille J. K. J. Am. Chem. Soc. 1958, 80, 1740.
[3]
Pasini D.; Takeuchi D. Chem. Rev. 2018, 118, 8983.
[4]
Makowski H. S.; Shim K. C.; Wilshinsky Z. W. J. Polym. Sci., Part A 1964, 2, 1549.
[5]
Cheng N.; Khasat N. P. J. Appl. Polym. Sci. 1988, 35, 825.
[6]
Boor J.,Jr. Ziegler-Natta Catalysts and Polymerizations, Academic Press, New York, 1979, Chapter 13.
[7]
Marvel C. S.; Garrison Jr. W. E. J. Am. Chem. Soc. 1959, 81, 4737.
[8]
Resconi L.; Waymouth R. M. J. Am. Chem. Soc. 1990, 112, 4953.
[9]
Cavallo L.; Guerra G.; Corradini P.; Resconi L.; Waymouth R. M. Macromolecules 1993, 26, 260.
[10]
Coates G. W.; Waymouth R. M. J. Am. Chem. Soc. 1991, 113, 6270.
[11]
Coates G. W.; Waymouth R. M. J. Am. Chem. Soc. 1993, 115, 91.
[12]
Jayaratne K. C.; Keaton R. J.; Henningsen D. A.; Sita L. R. J. Am. Chem. Soc. 2000, 122, 10490.
[13]
Crawford K. E.; Sita L. R. ACS Macro Lett. 2014, 3, 506.
[14]
Hustad P. D.; Coates G. W. J. Am. Chem. Soc. 2002, 124, 11578.
[15]
Nomura K.; Liu J. Y.; Fujiki M.; Takemoto A. J. Am. Chem. Soc. 2007, 129, 14170.
[16]
Edson J. B.; Coates G. W. Macromol. Rapid Commun. 2009, 30, 1900.
[17]
Shi X. C.; Wang Y. X.; Liu J. Y.; Cui D. M.; Men Y. F.; Li Y. S. Macromolecules 2011, 44, 1062.
[18]
Shi X. C.; Tang X. Y.; Li Y. S. Polymer 2011, 52, 3053.
[19]
Wang B.; Wang Y. X.; Cui J.; Long Y. Y.; Li Y. G.; Yuan X. Y.; Li Y. S. Macromolecules 2014, 47, 6627.
[20]
Park S.; Takeuchi D.; Osakada K. J. Am. Chem. Soc. 2006, 128, 3510.
[21]
Takeuchi D.; Fukuda Y.; Park S.; Osakada K. Macromolecules 2009, 42, 5909.
[22]
Meinhard D.; Wegner M.; Kipiani G.; Hearly A.; Reuter P.; Fischer S.; Marti O.; Rieger B. J. Am. Chem. Soc. 2007, 129, 9182.
[23]
Takeuchi D.; Matsuura R.; Park S.; Osakada K. J. Am. Chem. Soc. 2007, 129, 7002.
[24]
Miyamura Y.; Kinbara K.; Yamamoto Y.; Praveen V. K.; Kato K.; Takata M.; Takano A.; Matsushita Y.; Lee E.; Lee M.; Aida T. J. Am. Chem. Soc. 2010, 132, 3292.
[25]
Jian Z.; Baier M. C.; Mecking S. J. Am. Chem. Soc. 2015, 137, 2836.
[26]
Jian Z.; Mecking S. Angew. Chem. Int. Ed. 2015, 54, 15845.
[27]
Jian Z.; Mecking S. Macromolecules 2016, 49, 4395.
[28]
Schaverien C. J. Organometallics 1994, 13, 69.
[29]
Guo F.; Nishiura M.; Koshino H.; Hou Z. Macromolecules 2011, 44, 2400.
[30]
Wang H. B.; Zhao Y. N.; Nishiura M.; Yang Y.; Luo G.; Luo Y.; Hou Z. M. J. Am. Chem. Soc. 2019, 141, 12624.
Outlines

/