Advances in Environmental Coordination Chemistry of Np and Pu with Inorganic Anions in Aqueous Solution
Received date: 2021-08-13
Online published: 2021-10-08
Supported by
National Natural Science Foundation of China(21822606); National Natural Science Foundation of China(21790372)
Neptunium (Np) and plutonium (Pu) are two important actinides in nuclear industry. They can be generated through neutron capture of uranium (U) in reactors or decay from other transuranic elements. Representative isotopes of Np and Pu such as 237Np and 239Pu have long half-lives and possess high radiotoxicity, therefore may impose great hazard to biological system if they are released into the environment. The rich redox chemistry of Np and Pu further adds complexity of their chemical behavior in the environment. The coordination chemistry of Np and Pu in aqueous solution is of great significance to help understand and control their speciation distribution and migration behaviors in aqua environment. This article reviews the advances in coordination chemistry of Np and Pu with several common inorganic anions (OH–, $CO_3^{2-}$, $SO_4^{2-}$, Cl–, $NO_3^-$, F–, $PO_4^{3-}$) in aqueous solution, especially the speciation and coordination thermodynamics between Np/Pu in different oxidation states and these anions. In general, Np and Pu ions in the same oxidation state exhibit similar coordination behavior (species, structure, stability constants, etc.) when coordinating with the same anion. The coordination strength for Np/Pu ions in different oxidation states with the same anion ligand is roughly in the order of IV>III, VI>V. For the coordination of Np/Pu ions with different anions, the strength sequences are OH–>F–> ${H_2}PO_4^-$> $NO_3^-$>Cl– for monovalent anions and $CO_3^{2-}$> $HPO_4^{2-}$> $SO_4^{2-}$ for divalent anions. Factors such as instability of Np/Pu ions in some oxidation states, weak complexation, and low solubility of the complexes in the aqueous solution cause difficulties in obtaining precise and reliable coordination parameters for these ions experimentally. Moreover, the coordination parameters determined by different methods may vary with each other. To obtain more reliable parameters for the coordination of Np/Pu ions with these anions in the future, the use of more advanced characterization methods and the assistance of theoretical computation may provide strong support.
Key words: neptunium; plutonium; environment; inorganic anion; coordination chemistry; thermodynamics
Xue Dong , Hong Cao , Lei Xu , Zhipeng Wang , Jing Chen , Chao Xu . Advances in Environmental Coordination Chemistry of Np and Pu with Inorganic Anions in Aqueous Solution[J]. Acta Chimica Sinica, 2021 , 79(12) : 1415 -1424 . DOI: 10.6023/A21080380
[1] | Altmaier, M.; Gaona, X.; Fanghaenel, T. Chem. Rev. 2013, 113, 901. |
[2] | Magill, J.; Berthou, V.; Haas, D.; Galy, J.; Schenkel, R. Nucl. Energy 2003, 42, 263. |
[3] | Maher, K.; Bargar, J. R.; Brown, G. E. Inorg. Chem. 2013, 52, 3510. |
[4] | Wang, Z. P.; Pu, N.; Tian, Y.; Xu, C.; Wang, F.; Liu, Y.; Zhang, L. R.; Chen, J.; Ding, S. D. Inorg. Chem. 2019, 58, 5457. |
[5] | Neck, V.; Altmaier, M.; Fanghänelab, T. C. R. Chim. 2007, 10, 959. |
[6] | Ikeda-Ohno, A.; Hennig, C.; Rossberg, A.; Funke, H.; Scheinost, A. C.; Bernhard, G.; Yaita, T. Inorg. Chem. 2008, 47, 8294. |
[7] | Knope, K. E.; Soderholm, L. Chem. Rev. 2013, 113, 944. |
[8] | Altmaier, M.; Vercouter, T.; Poinssot, C.; Geckeis, H. Radionuclide Behaviour in the Natural Environment. Science, Implications and Lessons for the Nuclear Industry, Woodhead Publishing, Cambridge, 2012. |
[9] | Shilov, V. P.; Gogolev, A. V.; Fedoseev, A. M.; Ershov, B. G. Radiochemistry 2012, 54, 22. |
[10] | Choppin, G. R. Radiochim. Acta 1983, 32, 43. |
[11] | Mefod'Eva, M. P.; Krot, N. N.; Afanas'Eva, T. V.; Gel'Man, A. D. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1974, 23, 2285. |
[12] | Cho, H. R.; Youn, Y. S.; Jung, E. C.; Cha, W. Dalton Trans. 2016, 45, 19449. |
[13] | Thomas, V.; Vitorge, P.; Amekraz, B.; Giffaut, E.; Hubert, S.; Moulin, C. Inorg. Chem. 2005, 44, 5833. |
[14] | Lemire, R. J.; Fuger, J.; Nitsche, H.; Potter, P. E.; Rand, M. H.; Rydberg, J.; Spahiu, K.; Sullivan, J. C.; Ullman, W. J.; Vitorge, P.; Wanner, H. Chemical Thermodynamics of Neptunium and Plutonium, Elsevier, North Holland, Amsterdam, 2001. |
[15] | Fujiwara, K.; Kohara, Y. Radiochim. Acta 2008, 96, 613. |
[16] | Neck, V.; Kim, J. I.; Seidelc, B. S.; Marquardt, C. M.; Dardenne, K.; Jensen, M. P.; Hauser, W. Radiochim. Acta 2001, 89, 439. |
[17] | Guillaumont, R.; Mompean, F. J. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier, Amsterdam, The Netherlands, 2003. |
[18] | Yun, J. I.; Cho, H. R.; Neck, V.; Altmaier, M.; Seibert, A.; Marquardt, C. M.; Walther, C.; Fanghänel, T. Radiochim. Acta 2007, 95, 89. |
[19] | Walther, C.; Cho, H. R.; Marquardt, C. M.; Neck, V.; Seibert, A.; Yun, J. I.; Fanghänel, T. Radiochim. Acta 2007, 95, 7. |
[20] | Silver, G. L. J. Radioanal. Nucl. Chem. 2011, 288, 89. |
[21] | Silver, G. L. J. Radioanal. Nucl. Chem. 2012, 291, 915. |
[22] | Kitamura, A.; Kohara, Y. Radiochim. Acta 2004, 92, 583. |
[23] | Kitamura, A.; Kohara, Y. J. Nucl. Sci. Technol. 2002, 39, 294. |
[24] | Yamaguchi, T.; Sakamoto, Y.; Ohnuki, T. Radiochim. Acta 1994, 66, 9. |
[25] | Clark, D. L.; Hecker, S. S.; Jarvinen, G. D.; Neu, M. P. The Chemistry of the Actinide and Transactinide Elements, Springer, Dordrecht, 2006. |
[26] | Xia, Y. X.; Friese, J. I.; Moore, D. A.; Bachelor, P. P.; Rao, L. F. J. Radioanal. Nucl. Chem. 2007, 274, 79. |
[27] | Danesi, P. R.; Chiarizia, R.; Scibona, G.; D'Alessandro, G. J. Inorg. Nucl. Chem. 1971, 33, 3503. |
[28] | Veirs, D. K.; Smith, C. A.; Berg, J. M.; Zwick, B. D.; Marsh, S. F.; Allen, P.; Conradson, S. D. J. Alloys Compd. 1994, 213, 328. |
[29] | Berg, J. M.; Veirs, D. K.; Vaughn, R. B.; Cisneros, M. R.; Smith, C. A. Appl. Spectrosc. 2000, 54, 812. |
[30] | Allen, P. G.; Veirs, D. K.; Conradson, S. D.; Smith, C. A.; Marsh, S. F. Inorg. Chem. 1996, 35, 2841. |
[31] | Dacheux, N.; Thomas, A. C.; Brandel, V.; Genet, M. J. Nucl. Mater. 2000, 257, 108. |
[32] | Brandel, V.; Dacheux, N. J. Solid State Chem. 2004, 177, 4743. |
[33] | Topin, S.; Aupiais, J. J. Environ. Radioact. 2016, 153, 237. |
[34] | Topin, S.; Aupiais, J.; Moisy, P. Electrophoresis 2009, 30, 1747. |
[35] | Rao, L. F.; Srinivasan, T. G.; Garnov, A. Y.; Zanonato, P. L.; Bernardo, P. D. Geochim. Cosmochim. Acta 2004, 68, 4821. |
[36] | Bennett, D. A.; Hoffman, D.; Nitsche, H.; Russo, R. E.; Torres, R. A.; Baisden, P. A.; Andrews, J. E.; Palmer, C. E. A.; Silva, R. J. Radiochim. Acta 1992, 56, 15. |
[37] | Oliver, J. H. Radiochim. Acta 1983, 33, 29. |
[38] | Xia, Y.; Friese, J. I.; Moore, D. A.; Rao, L. F. J. Radioanal. Nucl. Chem. 2006, 268, 445. |
[39] | Inoue, Y.; Tochiyama, O. Bull. Chem. Soc. Jpn. 2006, 58, 2228. |
[40] | Rao, L. F.; Tian, G. X.; Xia, Y.; Friese, J. I. J. Therm. Anal. Calorim. 2009, 95, 409. |
[41] | Topin, S.; Aupiais, J.; Baglan, N.; Vercouter, T.; Vitorge, P.; Moisy, P. Anal. Chem. 2009, 81, 5354. |
[42] | Gainar, I.; Sykes, K. W. J. Chem. Soc. 1964, 4452. |
[43] | Rao, P. R. V.; Gudi, N. M.; Bagawde, S. V.; Patil, S. K. J. Inorg. Nucl. Chem. 1979, 41, 235. |
[44] | Topin, S.; Aupiais, J.; Baglan, N. Radiochim. Acta 2010, 98, 71. |
[45] | Maiwald, M. M.; Fellhauer, D.; Skerencak-Frech, A.; Panak, P. J. Appl. Geochem. 2019, 104, 10. |
[46] | Tian, G. X.; Rao, L. F.; Xia, Y.; Friese, J. I. J. Therm. Anal. Calorim. 2009, 95, 415. |
[47] | Gaona, X.; Tits, J.; Dardenne, K.; Liu, X.; Rothe, J.; Denecke, M. A.; Wieland, E.; Altmaier, M. Radiochim. Acta 2012, 100, 759. |
[48] | Gaona, X.; Fellhauer, D.; Altmaier, M. Pure Appl. Chem. 2013, 85, 2027. |
[49] | Reilly, S. D.; Neu, M. P. Inorg. Chem. 2006, 45, 1839. |
[50] | Cho, H. R.; Jung, E. C.; Park, K. K.; Kim, W. H.; Song, K.; Yun, J. I. Radiochim. Acta 2010, 98, 765. |
[51] | Cho, H. R.; Jung, E. C.; Park, K. K.; Song, K.; Yun, J. I. Radiochim. Acta 2010, 98, 555. |
[52] | Rao, L. F.; Tian, G. X.; Bernardo, P. D.; Zanonato, P. L. Chem.-Eur. J. 2011, 17, 10985. |
[53] | Moriyama, H.; Kitamura, A.; Fujiwara, K.; Yamana, H. Radiochim. Acta 1999, 87, 97. |
[54] | Moriyama, H.; Sasaki, T.; Kobayashi, T.; Takagi, I. J. Alloys Compd. 2006, 408, 1302. |
[55] | Kato, Y.; Kimura, T.; Yoshida, Z.; Nitani, N. Radiochim. Acta 1996, 74, 21. |
[56] | Maya, L. Inorg. Chem. 1984, 16, 3926. |
[57] | Pashalidis, I.; Czerwinski, K. R.; Fanghanel, T.; Kim, J. I. Radiochim. Acta 1997, 76, 55. |
[58] | Matsika, S.; Pitzer, R. M. The Electronic Spectrum of the Neptunyl ion, NpO22+, Department of Chemistry, The Ohio State University, 1998. |
[59] | Ahrland, S.; Brandt, L.; Magnéli, C.; Tolboe, O.; Paasivirta, J. Acta Chem. Scand. 1968, 22, 1579. |
[60] | Gaunt, A. J.; May, I.; Neu, M. P.; Reilly, S. D.; Scott, B. L. Inorg. Chem. 2011, 50, 4244. |
[61] | Mathur, J. N.; Choppin, G. R. Radiochim. Acta 1994, 64, 175. |
[62] | Gaunt, A. J.; May, I.; Neu, M. P.; Reilly, S. D.; Scott, B. L. Inorg. Chem. 2011, 50, 4244. |
[63] | Sawant, R. M.; Chaudhuri, N. K.; Rizvi, G. H.; Patil, S. K. J. Radioanal. Nucl. Chem. 1985, 91, 41. |
/
〈 |
|
〉 |