Article

SERS Studies on the Electrochemical and SPR Synergistic Catalytic Interfacial Reaction of 4-Chlorothiophenol

  • Hongyu Yuan ,
  • Minmin Xu ,
  • Jianlin Yao
Expand
  • College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

Received date: 2021-08-27

  Online published: 2021-10-21

Supported by

National Natural Science Foundation of China(21773166); National Natural Science Foundation of China(21673152)

Abstract

Surface-enhanced Raman spectroscopy (SERS) has become a promising technique widely utilized in the field of interface science due to its extremely high sensitivity and selectivity. Among this, surface plasmon resonance (SPR)-driven interfacial reactions have been attracted considerable attention because of their potential practical applications in the field of photocatalysis and photoelectrocatalysis. However, the relevant investigation was mainly focused on the single interfacial reaction for producing new compounds catalyzed by SPR or other external fields and it still remains significant challenge in designing of surface reaction and achieving the interfacial organic reaction with multi-steps. In this paper, 4-chlorothiophenol (4-CBT) was served as the probe molecule and glassy carbon electrode attached with gold nanoparticle monolayer film (Au MLF@GC electrode) was used as substrate due to its excellent uniformity. The extremely high surface sensitivity of SERS was utilized to realize the precise in situ monitoring of the interface catalytic reaction and its process with the synergistic effect of electrochemistry and SPR. In addition, several effects, involving potential, laser power, the pH value of solution and substituents, were systematically investigated. The results reveal that the surface catalysis reaction was absent by the control of single external field, such as potential or laser irradiation. In the relatively negative potential region, 4-CBT underwent a dechlorination reaction to produce thiophenol (TP) under the photoelectric synergistic catalysis, then dechlorination of 4-CBT was followed with a coupling reaction to generate biphenyl-4,4'-dithiol (4,4'-BPDT) as the potential further negatively shifts. The increase of laser power allows to significantly accelerate the reaction rate. The reaction rate is fastest in the neutral solution. Both 4-bromothiophenol (4-BTP) and ortho- or meta-dichloro-substituted thiophenol undergo similar dehalogenation substituents and surface coupling reactions. For ortho-dichloro-substituted thiophenol, the coupling efficiency is reduced due to steric hindrance. It provides a novel approach for surface multi-step organic synthesis reactions.

Cite this article

Hongyu Yuan , Minmin Xu , Jianlin Yao . SERS Studies on the Electrochemical and SPR Synergistic Catalytic Interfacial Reaction of 4-Chlorothiophenol[J]. Acta Chimica Sinica, 2021 , 79(12) : 1481 -1485 . DOI: 10.6023/A21080405

References

[1]
Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Chem. Phys. Lett. 1974, 26, 163.
[2]
Yi, R.-N.; Wu, Y. Acta Chim. Sinica 2021, 79, 694 (in Chinese).
[2]
( 易荣楠, 吴燕, 化学学报, 2021, 79, 694.)
[3]
He, H.; Zhou, L.-L.; Liu, Z. Acta Chim. Sinica 2021, 79, 45 (in Chinese).
[3]
( 贺晖, 周玲俐, 刘震, 化学学报, 2021, 79, 45.)
[4]
Perez-Jimenez, A. I.; Lyu, D.; Lu, Z.-X.; Liu, G.-K.; Ren, B. Chem. Sci. 2020, 11, 4563.
[5]
Cheng, J.; Wang, P.-L.; Su, X.-O. Acta Chim. Sinica 2019, 77, 977 (in Chinese).
[5]
( 程劼, 王培龙, 苏晓鸥, 化学学报, 2019, 77, 977.)
[6]
Homola, J.; Yee, S. S.; Gauglitz, G. Sens. Actuators, B 1999, 54, 3.
[7]
Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S.-L. MRS Bull. 2005, 30, 368.
[8]
Knobloch, H.; Brunner, H.; Leitner, A.; Aussenegg, F.; Knoll, W. J. Chem. Phys. 1993, 98, 10093.
[9]
Wark, A. W.; Lee, H. J.; Corn, R. M. Anat. Chem. 2005, 77, 3904.
[10]
Brockman, J. M.; Nelson, B. P.; Corn, R. M. Annu. Rev. Phys. Chem. 2000, 51, 41.
[11]
Cui, Y.-X.; He, S.-L. Opt. Lett. 2009, 34, 16.
[12]
Zhao, L.-B.; Huang, Y.-F.; Wu, D.-Y.; Ren, B. Acta Chim. Sinica 2014, 72, 1125 ( in Chinese).
[12]
( 赵刘斌, 黄逸凡, 吴德印, 任斌, 化学学报, 2014, 72, 1125.)
[13]
Halas, N. J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Chem. Rev. 2011, 111, 3913.
[14]
Jahn, M.; Patze, S.; Hidi, I. J.; Knipper, R.; Radu, A. I.; Mühlig, A.; Yüksel, S.; Peksa, V.; Weber, K.; Mayerhöfer, T.; Cialla-May, D.; Popp, J. Analyst 2016, 141, 756.
[15]
Schlu?cker, S. Angew. Chem., Int. Ed. 2014, 53, 4756.
[16]
Liebermann, T.; Knoll, W. Colloids Surf. 2000, 171, 115.
[17]
Dong, J.; Zhang, Z.-L.; Zheng, H.-R.; Sun, M.-T. Nanophotonics 2015, 4, 472.
[18]
Lindstrom, C. D.; Zhu, X.-Y. Chem. Rev. 2002, 106, 4281.
[19]
Kamat, P. V. J. Phys. Chem. B 2002, 106, 7729.
[20]
Kamat, P. V. J. Phys. Chem. C 2007, 111, 2834.
[21]
Wu, D.-Y.; Li, J.-F.; Ren, B.; Tian, Z.-Q. Chem. Soc. Rev. 2008, 37, 1025.
[22]
Wu, D.-Y.; Ren, B.; Xu, X.; Liu, G.-K.; Yang, Z.-L.; Tian, Z.-Q. J. Chem. Phys. 2003, 119, 1701.
[23]
Wu, D.-Y.; Ren, B.; Jiang, Y.-X.; Xu, X.; Tian, Z.-Q. J. Phys. Chem. A 2002, 106, 9042.
[24]
Zhao, L.-L.; Jensen, L.; Schatz, G. C. Nano Lett. 2006, 6, 1229.
[25]
Zhang, X.; Wang, P.-J.; Zhang, Z.-L.; Fang, Y.-R.; Sun, M.-T. Sci. Rep. 2014, 4, 5407.
[26]
Li, X.; Zhang, C.-J.; Wu, Q.; Zhang, J.; Xu, M.-M.; Yuan, Y.-X.; Yao, J.-L. J. Raman Spectrosc. 2018, 49, 1928.
[27]
Zhao, J.; Zhang, C.-J.; Lu, Y.-H.; Wu, Q.; Yuan, Y.-X.; Xu, M.-M.; Yao, J.-L. J. Raman Spectrosc. 2020, 51, 2199.
[28]
Xiao, F.-X.; Liu, B. Adv. Mater. Interfaces 2018, 5, 1701098.
[29]
Ding, C.-M.; Shi, J.-Y.; Wang, Z.-L.; Li, C. ACS Catal. 2017, 7, 675.
[30]
Yao, T.-T.; An, X.-R.; Han, H.-X.; Chen, J.-Q.; Li, C. Adv. Energy Mater. 2018, 8, 1800210.
[31]
Liu, B.; Wen, L.; Zhao, X. Prog. Org. Coat. 2009, 64, 120.
[32]
Ferraz, E. R. A.; Oliveira, G. A. R.; Grando, M. D.; Lizier, T. M.; Zanoni, M. V. B.; Oliveira, D. P. J. Environ. Manage. 2013, 124, 108.
[33]
Li, Y.-L.; Hu, Y.-F.; Shi, F.-X.; Li, H.-X.; Xie, W.; Chen, J. Angew. Chem., Int. Ed. 2019, 58, 9049.
[34]
Frens, G. Nature Phys. Sci. 1973, 241, 20.
[35]
Guo, Q.-H.; Xu, M.-M.; Yuan, Y.-X.; Gu, R.-A.; Yao, J.-L. Langmuir 2016, 32, 4530.
[36]
Zhang, C.-J.; Zhang, J.; Lin, J.-R.; Jin, Q.; Xu, M.-M.; Yao, J.-L. Acta Chim. Sinica 2017, 75, 860 (in Chinese).
[36]
( 张晨杰, 张婧, 林洁茹, 金琦, 徐敏敏, 姚建林, 化学学报, 2017, 75, 860.)
Outlines

/