Article

Preparation and High Temperature Electrochemical Performance of LiNi0.08Mn1.92O4 Cathode Material of Submicron Truncated Octahedron

  • Qimei Liang ,
  • Yujiao Guo ,
  • Junming Guo ,
  • Mingwu Xiang ,
  • Xiaofang Liu ,
  • Wei Bai ,
  • Ping Ning
Expand
  • a National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
    b Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

Received date: 2021-07-13

  Online published: 2021-11-03

Supported by

National Natural Science Foundation of China(51972282); National Natural Science Foundation of China(U1602273)

Abstract

The truncated octahedral LiNi0.08Mn1.92O4 (LNMO) cathode material with dominant {111}, truncated {110} and {100} crystal planes was prepared by a low temperature solid-state combustion method. The dominant {111} crystal plane of the unique truncated octahedron can form firm solid electrolyte interphase (SEI) layer and alleviate the manganese dissolution during the discharge-charge process, and a small part of {110} and {100} crystal planes can increase the rapid diffusion channels of Li+ ions. The field emission scanning electron microscope (SEM) and X-ray diffractometer (XRD) results show that LNMO has cubic spinel structure with submicron particle size. The electrochemical performances of LNMO are also outstanding at high temperature of 55 ℃, the initial discharge capacities are 109.9 and 98.0 mAh/g with capacity retentions of 75.8% and 80.5% after 300 cycles at 1 and 5 C, respectively. Even at high current rates of 10 and 15 C, the capacity retentions of 48.4% and 49.4% have been maintained after 1000 cycles, while the capacity loss of undoped LiMn2O4 is as high as 98% after 1000 cycles at 15 C. Moreover, the dynamic performance tests show that LNMO owns larger Li+ diffusion coefficient (D=3.86×10-15 cm2/s), smaller charge transfer resistances (before cycle and after cycles, the Rct=158.0 and 279.8 Ω) and lower apparent activation energy (Ea=17.63 kJ/mol) than LiMn2O4 (LMO), demostrate its enhanced Li+ transport dynamic. The XRD tests of two electrode slices after 1000 cycles at 10 C show that the crystal structure of LNMO electrode material is almost unchanged, which indicated that the Ni doping and the truncated octahedral structure of particles could improve the structural stability of material, effectively inhibit the Jahn-Teller effect and Mn dissolution, remarkably improve its high temperature electrochemical performance. Therefore, this work provides a reference for the application of spinel LiMn2O4 electrode material at high temperature.

Cite this article

Qimei Liang , Yujiao Guo , Junming Guo , Mingwu Xiang , Xiaofang Liu , Wei Bai , Ping Ning . Preparation and High Temperature Electrochemical Performance of LiNi0.08Mn1.92O4 Cathode Material of Submicron Truncated Octahedron[J]. Acta Chimica Sinica, 2021 , 79(12) : 1526 -1533 . DOI: 10.6023/A21070324

References

[1]
Chen, S.; He, T.; Su, Y.-F.; Lu, Y.; Bao, L.-L.; Chen, L.; Zhang, Q.-Y.; Wang, J.; Chen, R.-J.; Wu, F. ACS Appl. Mater. Interfaces 2017, 9, 29732.
[2]
Liu, J.-D.; Zhang, Y.-D.; Liu, J.-X.; Li, J.-H.; Qiu, X.-G.; Cheng, F.-Y. Acta Chim. Sinica 2020, 78, 1426 (in Chinese).
[2]
( 刘九鼎, 张宇栋, 刘俊祥, 李金翰, 邱晓光, 程方益, 化学学报, 2020, 78, 1426.)
[3]
Zhan, C.; Wu, T.-P.; Lu, J.; Amine, K. Energy Environ. Sci. 2018, 11, 243.
[4]
Duan, Y.-Z.; Zhu, J.-Y.; Guo, J.-M.; Xiang, M.-W.; Liu, X.-F.; Bai, H.-L.; Su, C.-W. Chem. J. Chinese Universities 2019, 40, 2574 (in Chinese).
[4]
( 段玉珍, 朱金玉, 郭俊明, 向明武, 刘晓芳, 白红丽, 苏长伟, 高等学校化学学报, 2019, 40, 2574.)
[5]
Lu, D.; Zheng, C.-M.; Chen, Y.-F.; Li, Y.-J.; Zhang, H.-M. Chem. J. Chinese Universities 2020, 41, 16844 (in Chinese).
[5]
( 陆地, 郑春满, 陈宇方, 李宇杰, 张红梅, 高等学校化学学报, 2020, 41, 16844.)
[6]
Luo, X.-Y.; Xiang, M.-W.; Li, Y.; Guo, J.-M.; Liu, X.-F.; Bai, H.-L.; Bai, W.; Su, C.-W. Vacuum 2020, 179, 109505.
[7]
Song, H.; Zhao, Y.; Niu, Y.; Hou, H. Solid State Ionics 2019, 331, 49.
[8]
Ni, J.-F.; Zhou, H.-H.; Chen, J.-T.; Su, G.-Y. Prog. Chem. 2004, 16, 335 (in Chinese).
[8]
( 倪江锋, 周恒辉, 陈继涛, 苏光耀, 化学进展, 2004, 16, 335.)
[9]
Iqbal, A.; Iqbal, Y.; Khan, A.-M.; Ahmed, S. Ionics 2017, 23, 1995.
[10]
Liu, H.-Q.; Tian, R.-Y.; Jiang, Y.; Tan, X.-H.; Chen, J.-K.; Zhang, L.-N.; Guo, Y.-J.; Wang, H.-F.; Sun, L.-F.; Chu, W.-G. Electrochim. Acta 2015, 180, 138.
[11]
Yang, S.-Q.; Zhang, T.-R.; Tao, Z.-L.; Chen, J. Acta Chim. Sinica 2013, 71, 1029 (in Chinese).
[11]
( 杨思七, 张天然, 陶占良, 陈军, 化学学报, 2013, 71, 1029.)
[12]
Liu, Q.; Liang, Q.-M.; Guo, J.-M.; Xiang, M.-W.; Bai, W.; Bai, H.-L.; Liu, X.-F. Ceram. Int. 2021, 47, 2441.
[13]
Liu, W.-H.; Xu, H.-H.; Zhou, Q.-H.; Dai, Y.-W.; Hu, W.; Li, H.-L. J. Electron. Mater. 2020, 49, 5523.
[14]
Jiang, J.-B.; Liang, L.-W.; Li, D.; Xiao, J.; Peng, Z.-D.; Du, K.; Cao, Y.-B.; Hu, G.-R.; Jiang, F. J. Nanosci. Nanotechnol. 2017, 17, 9182.
[15]
Bai, H.-L.; Xu, W.-Q.; Guo, J.-M.; Su, C.-W.; Xiang, M.-W.; Liu, X.-F.; Wang, R. J. Mater. Sci.-Mater. M. 2018, 29, 14668.
[16]
Raju, K.; Nkosi, F.-P.; Viswanathan, E.; Mathe, M.-K.; Damodaran, K.; Ozoemena, K.-I. Phys. Chem. Chem. Phys. 2016, 18, 13074.
[17]
Deepi, A.-S.; Srikesh, G.; Nesaraj, S.-A. Matéria 2021, 26, 1.
[18]
Ta, T.-A.; Nguyen, H.-S.; Nguyen, O.-T.-T.; Dang, C.-T.; Hoang, L.-A.; Pham, L.-D. Mater. Res. Express 2019, 6, 065505.
[19]
Wei, Q.-L.; Wang, X.-Y.; Wang, X.-Y.; Yang, X.-K.; Ju, B.-W.; Hu, B.-N.; Shu, H.-B.; Wen, W.-C.; Zhou, M.; Song, Y.-F.; Wu, H.; Hu, H. J. Mater. Chem. A 2013, 1, 4010.
[20]
Gu, X.; Li, X.-W.; Xu, L.-Q.; Xu, H.-Y.; Yang, J.; Qian, Y.-T. Int. J. Electrochem. Sci. 2012, 7, 2504.
[21]
Duan, Y.-Z.; Guo, J.-M.; Xiang, M.-W.; Zhu, J.-Y.; Su, C.-W.; Bai, H.-L.; Liu, X.-F.; Bai, W.; Wang, R. Solid State Ionics 2018, 326, 100.
[22]
Kunjuzwa, N.; Kebede, M.; Ozoemena, K.-I.; Mathe, M.-K. RSC Adv. 2016, 6, 111882.
[23]
Wang, F.-X.; Xiao, S.-Y.; Shi, Y.; Liu, L.-L.; Zhu, Y.-S.; Wu, Y.-P.; Wang, J.-Z.; Holze, R. Electrochim. Acta 2013, 93, 301.
[24]
Zhao, C.-H.; Kang, W.-P.; Wang, X.-X.; Zhao, S.-Q.; Shen, Q. Micro Nano Lett. 2012, 7, 558.
[25]
Benedek, R.; Thackeray, M.-M. J. Phys. Chem. C 2012, 116, 4050.
[26]
Kim, J.-S.; Kim, K. S.; Cho, W.; Shin, W.-H.; Kanno, R. Nano Lett. 2012, 12, 6358.
[27]
Huang, S.-S.; Wu, H.; Chen, P.-H.; Guo, Y.; Nie, B.; Chen, B.-J.; Liu, H.; Zhang, Y. J. Mater. Chem. A 2015, 3, 3633.
[28]
Zhou, S.-Y.; Mei, T.; Wang, X.-B.; Qian, Y.-T. Nanoscale 2018, 10, 17435.
[29]
Jiang, C.-H.; Tang, Z.-L.; Wang, S.-T.; Zhang, Z.-T. J. Power Sources 2017, 357, 144.
[30]
Wang, F.-X.; Xiao, S.-Y.; Shi, Y.; Liu, L.-L.; Zhu, Y.-S.; Wu, Y.-P.; Wang, J.-Z.; Holze, R. Electrochim. Acta 2013, 93, 301.
[31]
Wang, Q.-Q.; Zhang, Y.; Zhang, H.; Xu, Y.-L.; Dong, H.; Zhao, C.-J. J. Alloys Compd. 2017, 693, 474.
[32]
Zhu, C.-Y.; Liu, J.-X.; Yu, X.-H.; Zhang, Y.-J.; Dong, P.; Wang, X.; Zhang, Y.-N. Ceram Int. 2019, 45, 19351.
[33]
Cai, Y.-J.; Huang, Y.-D.; Wang, X.-C.; Jia, D.-Z.; Pang, W.-K.; Guo, Z.-P.; Du, Y.-P.; Tang, X.-C. J. Power Sources 2015, 278, 574.
[34]
Tabassam, L.; Nazir, T.; Manzoor, U.; Mehmood, S.; Hassan, M.-U.; Bhatti, A.-S. Mater. Res. Express 2019, 6, 115550.
[35]
Yu, Y.; Xiang, M.-W.; Guo, J.-M.; Su, C.-W.; Liu, X.-F.; Bai, H.-L.; Bai, W.; Duan, K.-J. J. Colloid Interf. Sci. 2019, 555, 64.
[36]
Huang, X.-H.; Li, G.-H.; Cao, B.-Q.; Wang, M.; Hao, C.-Y. J. Phys. Chem. C 2014, 113, 4381.
[37]
Chen, M.-F.; Chen, P.; Yang, F.; Song, H.-Y.; Liao, S.-J. Electrochim. Acta 2016, 206, 356.
[38]
Huang, Y.-D.; Jiang, R.-R.; Jia, D.-Z.; Guo, Z.-P. Mater. Lett. 2011, 65, 3486.
[39]
Eriksson, T.; Hjelm, A.-K.; Lindbergh, G.; Gustafsson, T. J. Electrochem. Soc. 2002, 149, A1164.
[40]
Xia, Y.; Wang, H.; Zhang, Q.; Nakamura, H.; Noguchi, H.; Yoshio, M. J. Power Sources 2007, 166, 485.
[41]
Yoshio, M.; Noguchi, H.; Wang, H.; Wang, X. J. Power Sources 2006, 154, 273.
[42]
Wu, Y.; Cao, C.-B.; Zhang, J.-T.; Wang, L.; Ma, X.-L.; Xu, X.-Y. ACS Appl. Mater. Interfaces 2016, 8, 19567.
[43]
Li, Y.-L.; Yu, D.-D.; Lin, S.; Sun, D.-F.; Lei, Z.-Q. Acta Chim. Sinica 2021, 79, 200 (in Chinese).
[43]
( 李燕丽, 于丹丹, 林森, 孙东飞, 雷自强, 化学学报, 2021, 79, 200.)
[44]
Rangarajan, S.-P.; Barsukov, Y.; Mukherjee, P.-P. J. Electrochem. Soc. 2019, 166, A2131.
Outlines

/