Communication

Single, Self-Born RP-Au-PR Motif Boosts 19-Fold Photoluminescence Quantum Yield of Metal Nanocluster

  • Daolan Xu ,
  • Ying Yang ,
  • Wentao Fan ,
  • Zongbing He ,
  • Jiafeng Zou ,
  • Lei Feng ,
  • Man-Bo Li ,
  • Zhikun Wu
Expand
  • aInstitute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
    bKey Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
    cUniversity of Science and Technology of China, Hefei 230026, China

Received date: 2021-11-05

  Online published: 2021-11-17

Supported by

National Natural Science Foundation of China(92061110); National Natural Science Foundation of China(21925303); National Natural Science Foundation of China(21771186); National Natural Science Foundation of China(21829501); National Natural Science Foundation of China(21222301); National Natural Science Foundation of China(21171170); National Natural Science Foundation of China(21528303); Hefei National Laboratory for Physical Sciences at the Microscale(KF2020102); Anhui University(and the provision of ConfotecTM MR520 fluorescence/Raman spectrometer)(S020118002/113); CASHIPS Director’s Fund(BJPY2019A02); Key Program of the 13th five-year plan, CASHIPS(KP-2017-16); Collaborative Innovation Program of Hefei Science Center, CAS(2020HSC-CIP005)

Abstract

The study of phosphine-protected gold nanocluster can be dated back to 1969, however, the RP-Au-PR motif has not been reported until now. Meanwhile, its analogue RS-Au-SR motif was often reported in thiolated gold nanoclusters, being of multiple functions (e.g., enhancing the luminescence). Herein, we successfully synthesized a monodisperse gold-silver nanocluster: [Au10Ag4(Dppp)5Cl4]Cl2 (Au10Ag4 NC, where the Dppp represents 1,3-diphenylphosphine propane, and NC represents nanocluster) by introducing the reducing agent (NaBH4) in an dichloromethane-ethanol solution of chloroauric acid, silver nitrate and 1,3-diphenylphosphine propane. Hydrochloric acid was added to promote the nanocluster size-focusing. Au10Ag4 NC is unstable in dichloromethane and will be transformed into another nanocluster [Au9Ag4(Dppp)4Cl4]Cl (Au9Ag4 NC). The structures and compositions of Au10Ag4 and Au9Ag4 NCs have been determined by single crystal X-ray crystallography and electrospray ionization mass spectrometry (ESI-MS). Au10Ag4 NC possesses an ico sahedral Au9Ag4 core, which is protected by a special RP-Au-PR motif, diphosphine and halogen ligands; Au9Ag4 NC has an icosahedral Au9Ag4 metal core protected by bisphosphine and halogen ligands, thus the major structural difference between Au10Ag4 and Au9Ag4 NCs is the RP-Au-PR motif. The motif can be self-vanished in Au10Ag4 NC when dichloromethane acts as the solvent, resulting in the formation of Au9Ag4 NC as mentioned above; on the other hand, the motif can self-bear in Au9Ag4 NC when the solvent is ethanol instead of dichloromethane, resulting in the formation of Au10Ag4 NC. The two nanoclusters showed similar ultraviolet-visible-near infrared (UV/Vis/NIR) absorption spectra except for slight shift of the profile, indicating that the RP-Au-PR motif has no essential influence on the electronic structure of nanocluster, which was supported by density functional theory (DFT) calculations. However, the photoluminescence quantum yield of Au10Ag4 NC (10.32%) is 19 times higher than that of Au9Ag4 NC (0.52%), ascribing to the enhancement of charge transfer and structure rigidity induced by the motif. This work provides new views to the structure and photoluminescence of gold-silver nanocluster, has important implications for the structure-property understanding and the property improvement.

Cite this article

Daolan Xu , Ying Yang , Wentao Fan , Zongbing He , Jiafeng Zou , Lei Feng , Man-Bo Li , Zhikun Wu . Single, Self-Born RP-Au-PR Motif Boosts 19-Fold Photoluminescence Quantum Yield of Metal Nanocluster[J]. Acta Chimica Sinica, 2022 , 80(1) : 1 -6 . DOI: 10.6023/A21110499

References

[1]
Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Chem. Rev. 2016, 116, 10346.
[2]
Chakraborty, I.; Pradeep, T. Chem. Rev. 2017, 117, 8208.
[3]
Wan, X.-K.; Yuan, S.-F.; Lin, Z.-W.; Wang, Q.-M. Angew. Chem. Int. Ed. 2014, 53, 2923.
[4]
Si, W.-D.; Li, Y.-Z.; Zhang, S.-S.; Wang, S.; Feng, L.; Gao, Z.-Y.; Tung, C.-H.; Sun, D. ACS Nano 2021, 15, 16019.
[5]
Antonello, S.; Perera, N. V.; Ruzzi, M.; Gascón, J. A.; Maran, F. J. Am. Chem. Soc. 2013, 135, 15585.
[6]
Li, Q.; Zhou, M.; So, W. Y.; Huang, J.; Li, M.; Kauffffman, D. R.; Cotlet, M.; Higaki, T.; Peteanu, L. A.; Shao, Z.; Jin, R. J. Am. Chem. Soc. 2019, 141, 5314.
[7]
Wu, Z.; Yao, Q.; Chai, O. J. H.; Ding, N.; Xu, W.; Zang, S.; Xie, J. Angew. Chem. Int. Ed. 2020, 59, 9934.
[8]
Jin, F.; Dong, H.; Zhao, Y.; Zhuang, S.; Liao, L.; Yan, N.; Gu, W.; Zha, J.; Yuan, J.; Li, J.; Deng, H.; Gan, Z.; Yang, J.; Wu, Z. Acta Chim. Sinica 2020, 78, 407. (in Chinese)
[8]
( 金凤鸣, 董宏伟, 赵燕, 庄胜利, 廖玲文, 闫楠, 古万苗, 查珺, 袁金云, 李进, 邓海腾, 甘自保, 杨金龙, 伍志鲲, 化学学报 2020, 78, 407.)
[9]
Yamazoe, S.; Koyasu, K.; Tsukuda, T. Acc. Chem. Res. 2014, 47, 816.
[10]
Liu, C.; Abroshan, H.; Yan, C.; Li, G.; Haruta, M. ACS Catal. 2016, 6, 92.
[11]
Li, M.-B.; Tian, S.-K.; Wu, Z. Chin. J. Chem. 2017, 35, 567.
[12]
Yan, J.; Teo, B. K.; Zheng, N. Acc. Chem. Res. 2018, 51, 3084.
[13]
Zhuang, S.; Chen, D.; Liao, L.; Zhao, Y.; Xia, N.; Zhang, W.; Wang, C.; Yang, J.; Wu, Z. Angew. Chem. Int. Ed. 2020, 59, 3073.
[14]
Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Chem. Rev. 2015, 115, 10410.
[15]
Chen, L.; Zhang, Y.; Jiang, H.; Wang, X.; Liu, C. Chin. J. Chem. 2016, 34, 589.
[16]
Gao, G.; Gong, D.; Zhang, M.; Sun, T. Acta Chim. Sinica 2016, 74, 363. (in Chinese)
[16]
( 高冠斌, 龚德君, 张明曦, 孙涛垒, 化学学报 2016, 74, 363.)
[17]
Lin, R.; Chen, Y.; Tao, G.; Pei, X.; Liu, F.; Li, N. Acta Chim. Sinica 2017, 75, 1103. (in Chinese)
[17]
( 林若韵, 陈阳, 陶广宇, 裴晓静, 刘锋, 李娜, 化学学报 2017, 75, 1103.)
[18]
Jia, T.-T.; Yang, G.; Mo, S.-J.; Wang, Z.-Y.; Li, B.-J.; Ma, W.; Guo, Y.-X.; Chen, X.; Zhao, X.; Liu, J.-Q.; Zang, S.-Q. ACS Nano 2019, 13, 8320.
[19]
Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X. Anal. Chem. 2011, 83, 1193.
[20]
George, A.; Shibu, E. S.; Maliyekkal, S. M.; Bootharaju, M. S.; Pradeep, T. ACS Appl. Mater. Interfaces 2012, 4, 639.
[21]
Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J. Chem. - Asian J. 2013, 8, 858.
[22]
Zhang, L.; Wang, E. Nano Today 2014, 9, 132.
[23]
Qin, H.-N.; Wang, Z.-Y.; Zang, S.-Q. Acta Chim. Sinica 2021, 79, 1037. (in Chinese)
[23]
( 秦浩男, 王朝阳, 臧双全, 化学学报 2021, 79, 1037.)
[24]
McPartlin, M.; Mason, R.; Malatesta, L. J. Chem. Soc. D 1969, 334.
[25]
Briant, C. E.; Theobald, B. R. C.; White, J. W.; Bell, L. K.; Mingos, D. M. P.; Welch, A. J. J. Chem. Soc., Chem. Commun. 1981, 201.
[26]
Teo, B. K.; Hong, M. C.; Zhang, H.; Huang, D. B. Angew. Chem. Int. Ed. 1987, 26, 897.
[27]
Kamei, Y.; Shichibu, Y.; Konishi, K. Angew. Chem. Int. Ed. 2011, 50, 7442.
[28]
Chen, J.; Zhang, Q.-F.; Bonaccorso, T. A.; Williard, P. G.; Wang, L.-S. J. Am. Chem. Soc. 2014, 136, 92.
[29]
Zhu, M.; Li, M.; Yao, C.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L.; Wu, Z. Acta Phys.-Chim. Sin. 2018, 34, 792. (in Chinese)
[29]
( 祝敏, 李漫波, 姚传好, 夏楠, 赵燕, 闫楠, 廖玲文, 伍志鲲, 物理化学学报, 2018, 34, 792.)
[30]
Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science 2007, 318, 430.
[31]
Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130, 5883.
[32]
Wu, Z.; Jin, R. Nano Lett. 2010, 10, 2568.
[33]
Pyo, K.; Thanthirige, V. D.; Kwak, K.; Pandurangan, P.; Ramakrishna, G.; Lee, D. J. Am. Chem. Soc. 2015, 137, 8244.
[34]
Gan, Z.; Lin, Y.; Luo, L.; Han, G.; Liu, W.; Liu, Z.; Yao, C.; Weng, L.; Liao, L.; Chen, J.; Liu, X.; Luo, Y.; Wang, C.; Wei, S.; Wu, Z. Angew. Chem. Int. Ed. 2016, 55, 11567.
[35]
Wu, Z.; Suhana, J.; Jin, R. J. Mater. Chem. 2009, 19, 622.
[36]
Xia, N.; Wu, Z. Chem. Sci. 2021, 12, 2368.
[37]
Shichibu, Y.; Konishi, K. Small 2010, 6, 1216.
[38]
Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. Proc. Natl. Acad. Sci. 2008, 105, 9157.
[39]
Wu, Z.; Jin, R. Chem. Eur. J. 2011, 17, 13966.
[40]
Dhayal, R. S.; Liao, J.-H.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C.-W. Angew. Chem. Int. Ed. 2015, 54, 3702.
[41]
Jin, S.; Zou, X.; Xiong, L.; Du, W.; Wang, S.; Pei, Y.; Zhu, M. Angew. Chem. Int. Ed. 2018, 57, 16768.
[42]
Weerawardene, K. D. M.; Pandeya, P.; Zhou, M.; Chen, Y.; Jin, R.; Aikens, C. M. J. Am. Chem. Soc. 2019, 141, 18715.
Outlines

/