Article

Supramolecular Self-assembly of Symmetric Dicyclohexanocucurbit[6]uril and Nicotinic Hydrazide

  • Yanmei Jin ,
  • Ye Meng ,
  • Yuan Li ,
  • Jianhua Shi ,
  • Lei Deng
Expand
  • aGuizhou Coal Product Quality Supervision & Inspection Institute, Liupanshui 553001, China
    bCenter for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China

Received date: 2021-10-19

  Online published: 2021-11-18

Abstract

Cucurbit[n]uril (Q[n]) is a relatively new supramolecular macrocyclic compound, which has a unique structure comprised of a hydrophobic cavity with intermediate potential, two carbonyl portals with negative potential, and an outer surface with positive potential. Cyclohexyl-substituted Q[n]s have also attracted a lot of attention as the first member of the Q[n] family that can be dissolved in organic solvents and water. In this paper, the interaction modes between the symmetric dicyclohexanocucurbit[6]uril (CyH2Q[6]) as a host and nicotinic hydrazide (NH) as a guest were investigated by nuclear magnetic resonance spectroscopy (1H NMR), isothermal titration calorimetry (ITC), matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry, and single-crystal X-ray diffraction. The 1H NMR spectrum results showed that the proton peaks shift to the downfield, indicating that NH is located at the portal of CyH2Q[6]. ITC experiment results showed that the binding constant (Ka) of NH@CyH2Q[6] is (1.019±0.118)×103 L•mol-1, the host-guest binding ratio is 0.954±0.013, and the enthalpy value is ΔH=(–48.21±0.35) kJ•mol-1 and entropy value TΔS=(–31.04±0.52) kJ•mol-1. The MALDI-TOF mass spectrum also showed that the molecular ion peak m/z is 1242.4542 (theoretical value: 1242.1603), which is attributed to [CyH2Q[6]•HNH]+. These experimental results showed that CyH2Q[6] formed a stable 1∶1 exclusion complex with NH in an aqueous solution. In addition, the host CyH2Q[6], ZnCl2 and the guest NH were added to HCl aqueous solution, and the complex single-crystal structure was obtained by evaporation and standing. The single-crystal structure of the complex showed that there are ion-dipole interactions and hydrogen bonds between the carbonyl oxygen of CyH2Q[6] and NH, and there are ion-dipole interactions between the outer surface of CyH2Q[6] and [ZnCl4]2-. These weak interactions are the driving forces of the multi-dimensional and multi-level supramolecular framework formed by the complex.

Cite this article

Yanmei Jin , Ye Meng , Yuan Li , Jianhua Shi , Lei Deng . Supramolecular Self-assembly of Symmetric Dicyclohexanocucurbit[6]uril and Nicotinic Hydrazide[J]. Acta Chimica Sinica, 2022 , 80(1) : 44 -48 . DOI: 10.6023/A21100465

References

[1]
Dusselier, M.; Davis, M. E. Chem. Rev. 2018, 118, 5265.
[2]
Helal, A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. Natl. Sci. Rev. 2017, 4, 296.
[3]
Yaghi, O. M.; Li, G. M.; Li, H. L. Nature 1995, 378, 703.
[4]
Yang, L.; Wu, Y. J.; Wu, X. J.; Cai, W. Q. Acta Chim. Sinica 2021, 79, 520 ; (in Chinese)
[4]
( 杨磊, 吴宇静, 吴选军, 蔡卫权, 化学学报 2021, 79, 520.)
[5]
Wang, H.; Zeng, Z. T.; Xu, P.; Li, L. S.; Zeng, G. G.; Xiao, R.; Tang, Z. Y.; Huang, D. L.; Tang, L.; Lai, C.; Jiang, D. N.; Liu, Y.; Yi, H.; Qin, L.; Ye, S. J.; Ren, X. Y.; Tang, W. W. Chem. Soc. Rev. 2019, 48, 488.
[6]
Waller, P. J.; Gandara, F.; Yaghi, O. M. Acc. Chem. Res. 2015, 48, 3053.
[7]
Liu, J. G.; Zhang, M. Y.; Wang, N.; Wang, C. G.; Ma, L. L. Acta Chim. Sinica 2020, 78, 311 ; (in Chinese)
[7]
( 刘建国, 张明月, 王楠, 王晨光, 马隆龙, 化学学报 2020, 78, 311.)
[8]
Wen, Y.; Zhang, J.; Xu, Q.; Wu, X. T.; Zhu, Q. L. Coord. Chem. Rev. 2018, 376, 248.
[9]
Chedid, G.; Yassin, A. Nanomaterials 2018, 8, 916.
[10]
Han, S. S.; Mendoza-Cortes, J. L.; Goddard III, W. A. Chem. Soc. Rev. 2009, 38, 1460.
[11]
Kim, J. Y.; Oh, H.; Moon, H. R. Adv. Mater. 2019, 31, 1805293.
[12]
Zhang, X. M.; Li, X. Y.; Xiong, W. F.; Li, H. F.; Cao, R. Acta Chim. Sinica 2021, 79, 180 ; (in Chinese)
[12]
( 张晓萌, 李希雅, 熊晚枫, 李红芳, 曹荣, 化学学报 2021, 79, 180.)
[13]
Day, A. I.; Blanck, R. J.; Arnold, A. P. Angew. Chem. Int. Ed. 2002, 41, 275.
[14]
Kim, J.; Jung, I. S.; Kim, S. Y.; Lee, E.; Kang, J. K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. J. Am. Chem. Soc. 2000, 122, 540.
[15]
Isaacs, L.; Park, S. K.; Liu, S. M.; Ko, Y. H.; Selvapalam, N.; Kim, Y.; Kim, H.; Zavalij, P. Y.; Kim, G. H.; Lee, H. S.; Kim, K. J. Am. Chem. Soc. 2005, 127, 18000.
[16]
Ni, X. L.; Xiao, X.; Cong, H.; Liang, L. L.; Chen, K.; Cheng, X. J.; Ji, N. N.; Zhu, Q. J.; Xue, S. F.; Tao, Z. Chem. Soc. Rev. 2013, 42, 9480.
[17]
Li, Q.; Sun, J.; Zhou, J.; Hua, B.; Shao, L.; Huang, F. Org. Chem. Front. 2018, 5, 1940.
[18]
Li, Q.; Jie, K.; Huang, F. Angew. Chem. Int. Ed. 2020, 59, 5355.
[19]
Jin, Y. M.; Jiang, D. F.; Meng, Y.; Gao, J.; Zheng, J.; Ma, P. H. J. Incl. Phenom. Macro. 2021, 100, 209.
[20]
Meng, Y.; Zhao, W. W.; Zheng, J.; Jiang, D. F.; Gao, J.; Jin, Y. M.; Ma, P. H. RSC Adv. 2021, 11, 3470.
[21]
Wang, C.; Cheng, S. Y.; Zhao, W. W.; Yang, X. N.; Zhou, K. Z.; Tian, J. J.; Jiang, D. F.; Ma, P. H. Crystallogr. Rep. 2020, 65, 1156.
[22]
Zhang, Z. R.; Kan, J. L.; Feng, H. M.; Liu, Q. Y.; Tao, Z.; Xiao, X. Chinese J. Org. Chem. 2018, 38, 1972 ; (in Chinese)
[22]
( 张智睿, 阚京兰, 冯华明, 刘青云, 陶朱, 肖昕, 有机化学 2018, 38, 1972.)
[23]
Bai, D.; Zhou, Y.; Lu, J. H.; Liu, Q. Y.; Chen, Q.; Tao, Z.; Xiao, X. Chinese J. Org. Chem. 2018, 38, 1477 ; (in Chinese)
[23]
( 白东, 周杨, 卢季红, 刘青云, 陈青, 陶朱, 肖昕, 有机化学 2018, 38, 1477.)
[24]
Freeman, W. A.; Mock, W. L.; Shih, N. Y. J. Am. Chem. Soc. 1981, 103, 7367.
[25]
Day, A. I.; Arnold, A. P. WO 0068232, 2000.
[26]
Zhao, J. Z.; Kim, H. J.; Oh, J.; Kim, S. Y.; Lee, J. W.; Sakamoto, S.; Yamaguchi, K.; Kim, K. Angew. Chem. Int. Ed. 2001, 40, 4233.
[27]
Jin, Y. M.; Meng, Y.; Yang, X. N.; Zhu, C.; Tao, Z.; Liu, J. X.; Ma, P. H. Cryst. Growth Des. 2021, 21, 2977.
[28]
Zheng, L. M.; Liu, J. X. J. Solid State Chem. 2017, 245, 45.
[29]
Sheldrick, G. M. Acta Crystallogr. Sect. A 2008, 64, 112.
[30]
Sheldrick, G. M. SHELXS-97 and SHELXL-97, University of Goettingen, Germany, 1997.
[31]
Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.
Outlines

/