Article

Preparation of Controllable Non-covalent Functionalized Carbon Nanotubes with Metalloporphyrin-Sn Network and Application to Protein Adsorption

  • Chaofeng Wang ,
  • Guodong Zheng ,
  • Yue Wang ,
  • Huijia Song ,
  • Xiaoyi Chen ,
  • Ruixia Gao
Expand
  • a School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
    b School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China

Received date: 2021-10-23

  Online published: 2021-11-22

Supported by

Natural Science Foundation of Shaanxi Province(2020JM-066)

Abstract

In order to enhance the adsorption of protein, a one-step metallization of porphyrin and a novel metalloporphyrin-Sn network non-covalently functionalized multi-walled carbon nanotube composite (MMPT), were developed only by a simple one-pot solvothermal method. Under solvothermal conditions, Sn entered the meso-tetrakis(4-carboxyphenyl)porphine (TCPP) macrocycle to metalize the porphyrins and formed SnTCPP. Meanwhile, Sn, as a crosslinker, bridged the SnTCPP molecules around the surface of multi-walled carbon nanotubes (MWCNTs) to form a uniform and continuous SnTCPP-Sn network layer through self-assembly without any pre-modification for TCPP and MWCNTs. Then, through π-π stacking, multilayers of SnTCPP-Sn network can be formed via layer-by-layer self-assembly, as well as MMPT with controllable layer thickness. With this synthetic strategy, the sites of porphyrin on the MWCNTs surfaces were found continuous and evenly distributed, which enabled the controllability of layer thickness as well as the site density by adjusting the MWCNTs/TCPP ratio. The morphology, structure and properties of MMPT were characterized comprehensively by scanning electron microscope (SEM), transmission electron microscope (TEM) and its energy-dispersive X-ray spectroscopy (EDS), ultraviolet- visible (UV-Vis) spectroscopy, Fourier transform infrared spectrophotometer (FT-IR), and zeta potential. In addition, the effects of various factors on its adsorption properties and the interaction between MMPT and bovine serum albumin (BSA) were investigated. When the mass ratio of MWCNTs was 1.0 and the concentration of BSA was 1.5 mg•g-1, the effective adsorption sites per unit mass of MMPT reached the maximum, resulting in the maximum adsorption capacity of MMPT to BSA (651.4 mg•g-1), and the adsorption equilibrium can be reached in only 5 min. Compared with other adsorbents, MMPT showed high adsorption capacity for BSA under the optimal carbon nanotube ratio and adsorption conditions. In addition, MMPT also exhibited a good adsorption affinity for other proteins like bovine hemoglobin (BHb) and lysozyme (Lyz), which has a wide application prospect in protein adsorption, drug delivery, sensing and so on.

Cite this article

Chaofeng Wang , Guodong Zheng , Yue Wang , Huijia Song , Xiaoyi Chen , Ruixia Gao . Preparation of Controllable Non-covalent Functionalized Carbon Nanotubes with Metalloporphyrin-Sn Network and Application to Protein Adsorption[J]. Acta Chimica Sinica, 2022 , 80(2) : 126 -132 . DOI: 10.6023/A21100475

References

[1]
Iijima, S. Nature 1991, 354, 56.
[2]
Wu, Y. Q.; Tao, X.; Qing, Y.; Xu, H.; Yang, F.; Luo, S.; Tian, C. H.; Liu, M.; Lu, X. H. Adv. Mater. 2019, 31, 1900178.
[3]
Bai, Y. X.; Shen, B. Y.; Zhang, S. L.; Zhu, Z. X.; Sun, S. L.; Gao, J.; Li, B. H.; Wang, Y.; Zhang, R. F.; Wei, F. Adv. Mater. 2019, 31, 1800680.
[4]
Yang, K.; Xing, B. S. Chem. Rev. 2010, 110, 5989.
[5]
Cui, L.-R.; Zhang, J.; Sun, Y.-Y.; Lu, S.-F.; Xiang, Y. Acta Chim. Sinica 2019, 77, 47. (in Chinese)
[5]
( 崔丽瑞, 张劲, 孙一焱, 卢善富, 相艳, 化学学报, 2019, 77, 47.)
[6]
Wang, H.-M.; He, M.-S.; Zhang, Y.-Y. Acta Phys.-Chim. Sin. 2019, 35, 1207. (in Chinese)
[6]
( 王灏珉, 何茂帅, 张莹莹, 物理化学学报, 2019, 35, 1207.)
[7]
Enayatpour, B.; Rajabi, M.; Yari, M.; Mirkhan, S. M. R.; Najafi, F.; Moradi, O.; Bharti, A. K.; Agarwal, S.; Gupta, V. K. J. Mol. Liq. 2017, 231, 566.
[8]
Smith, S. C.; Ahmed, F.; Gutierrez, K. M.; Rodrigues, D. F. Chem. Eng. J. 2014, 240, 147.
[9]
Kopac, T.; Bozgeyik, K.; Flahaut, E. J. Mol. Liq. 2018, 252, 1.
[10]
Prato, M.; Kostarelos, K.; Bianco, A. Acc. Chem. Res. 2008, 41, 60.
[11]
Sáfar, G. A. M.; Ribeiro, H. B.; Fantini, C.; Plentz, F. O.; Santos, A. P.; DeFreitas-Silva, G.; Idemori, Y. M. Carbon 2010, 48, 377.
[12]
Zheng, J.; Song, D. D.; Chen, H.; Xu, J. L.; Alharbi, N. S.; Hayat, T.; Zhang, M. Chin. Chem. Lett. 2020, 31, 1109.
[13]
Wu, P.; Chen, X.; Hu, N.; Tam, U. C.; Blixt, O.; Zettl, A.; Bertozzi, C. R. Angew. Chem. Int. Ed. 2008, 47, 5022.
[14]
Feng, W.; Luo, R. M.; Xiao, J.; Ji, P. J.; Zheng, Z. G. Chem. Eng. Sci. 2011, 66, 4807.
[15]
Contal, E.; Morère, A.; Thauvin, C.; Perino, A.; Meunier, S.; Mioskowski, C.; Wagner, A. J. Phys. Chem. B 2010, 114, 5718.
[16]
Wang, D.; Niu, L. J.; Qiao, Z. Y.; Cheng, D. B.; Wang, J. F.; Zhong, Y.; Bai, F.; Wang, H.; Fan, H. Y. ACS Nano 2018, 12, 3796.
[17]
Zeng, K. V.; Lu, Y. Y.; Tang, W. Q.; Zhao, S. L.; Liu, Q. Y.; Zhu, W. H.; Tian, H.; Xie, Y. S. Chem. Sci. 2019, 10, 2186.
[18]
Zhang, N.; Wang, L.; Wang, H.; Cao, R. H.; Wang, J. F.; Bai, F.; Fan, H. Y. Nano Lett. 2018, 18, 560.
[19]
Wu, Q.-Y.; Zhang, C.-X.; Sun, K.; Jiang, H.-L. Acta Chim. Sinica 2020, 78, 688. (in Chinese)
[19]
( 吴浅耶, 张晨曦, 孙康, 江海龙, 化学学报, 2020, 78, 688.)
[20]
Duan, S.-H.; Wu, S.-F.; Wang, L.; She, H.-D.; Huang, J.-W.; Wang, Q.-Z. Acta Phys.-Chim. Sin. 2020, 36, 1905086. (in Chinese)
[20]
( 段树华, 巫树锋, 王磊, 佘厚德, 黄静伟, 王其召, 物理化学学报, 2020, 36, 1905086.)
[21]
Lu, X. L.; Fan, J. J.; Liu, Y.; Hou, A. X. J. Mol. Struct. 2009, 934, 1.
[22]
Xiao, C. Q.; Jiang, F. L.; Zhou, B.; Li, R.; Liu, Y. Photochem. Photobiol. Sci. 2011, 10, 1110.
[23]
Beltramini, M.; Firey, P. A.; Ricchelli, F.; Rodgers, M. A. J.; Jori, J. Biochemistry 1987, 26, 6852.
[24]
Hijazi, I.; Bourgeteau, T.; Cornut, R.; Morozan, A.; Filoramo, A.; Leroy, J.; Derycke, V.; Jousselme, B.; Campidelli, S. J. Am. Chem. Soc. 2014, 136, 6348.
[25]
Zhong, Y.; Wang, Z. X.; Zhang, R. F.; Bai, F.; Wu, H. M.; Haddad, R.; Fan, H. Y. ACS Nano 2014, 8, 827.
[26]
Wang, J. F.; Zhong, Y.; Wang, L.; Zhang, N.; Cao, R. H.; Bian, K. F.; Alarid, L.; Haddad, R. E.; Bai, F.; Fan, H. Y. Nano Lett. 2016, 16, 6523.
[27]
Wang, A. J.; Cheng, L. X.; Zhao, W.; Zhu, W. H.; Shang, D. H. Dyes Pigm. 2019, 161, 155.
[28]
Wang, C. F.; Hao, Y.; Wang, Y.; Song, H. J.; Hussain, S.; Gao, R. X.; Gao, L. Y.; He, Y. L.; Zheng, G. D.; Tang, Y. H. ACS Appl. Nano Mater. 2021, 4, 2345.
[29]
Mazloom, J.; Ghodsi, F. E. Mater. Res. Bull. 2013, 48, 1468.
[30]
Wei, T.; Kaewtathip, S.; Shing, K. J. Phys. Chem. C 2009, 113, 2053.
[31]
Topoglidis, E.; Cass, A. E. G.; Gilardi, G.; Sadeghi, S.; Beaumont, N.; Durrant, J. R. Anal. Chem. 1998, 70, 5111.
[32]
Konopinska, K.; Pietrzak, M.; Malinowska, E. Anal. Biochem. 2015, 470, 41.
[33]
Yu, X. Y.; Liu, R. H.; Yi, R. Q.; Yang, F. X.; Huang, H. W.; Chen, J.; Ji, D. H.; Yang, Y.; Li, X. F.; Yi, P. G. Spectrochim. Acta, Part A 2011, 78, 1329.
[34]
Vos, W. M. D.; Biesheuvel, P. M.; Keizer, A. D.; Kleijn, J. M.; Stuart, M. A. C. Langmuir 2008, 24, 6575.
[35]
Du, P.; Zhao, J.; Mashayekhi, H.; Xing, B. S. J. Phys. Chem. C 2014, 118, 22249.
[36]
Kopac, T.; Bozgeyik, K. Colloids Surf. B: Biointerfaces 2010, 76, 265.
[37]
Zhang, M. S.; Huang, J. R.; Yu, P.; Chen, X. Talanta 2010, 81, 162.
[38]
Suh, C. W.; Kim, M. Y.; Choo, J. B.; Kim, J. K.; Kim, H. K.; Lee, E. K. J. Biotechnol. 2004, 112, 267.
[39]
Chakrabarty, T.; Kumar, M.; Shahi, V. K. Ind. Eng. Chem. Res. 2012, 51, 3015.
[40]
Sekar, G.; Vijayakumar, S.; Thanigaivel, S.; Thomas, J.; Mukherjee, A.; Chandrasekaran, N. J. Lumin. 2016, 170, 141.
[41]
Li, X. F.; Liu, H.; Deng, Z. W.; Chen, W. Q.; Li, T. H.; Zhang, Y. S.; Zhang, Z. M.; He, Y.; Tan, Z. J.; Zhong, S. A. Polymers 2020, 12, 536.
[42]
Gao, R. X.; Hao, Y.; Zhang, L. L.; Cui, X. H.; Liu, D. C.; Zhang, M.; Tang, Y. H.; Zheng, Y. S. Chem. Eng. J. 2016, 284, 139.
[43]
Causserand, C.; Kara, Y.; Aimar, P. J. Membr. Sci. 2001, 186, 165.
[44]
Gao, R. X.; Hao, Y.; Cui, X. H.; Zhang, L. L.; Liu, D. C.; Tang, Y. H. J. Alloys Compd. 2015, 637, 461.
[45]
Osada, N.; Otsuka, C.; Nishikawa, Y.; Kasuga, T. Mater. Lett. 2020, 264, 127280.
Outlines

/