Article

Synthesis of Cu Single Atom with Adjustable Coordination Environment and Its Catalytic Hydrogenation Performance

  • Lingling Li ,
  • Yu Liu ,
  • Shuyan Song ,
  • Hongjie Zhang
Expand
  • aState Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
    bSchool of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
    cDepartment of Chemistry, Tsinghua University, Beijing 100084, China
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2021-10-20

  Online published: 2021-12-06

Supported by

National Science and Technology Major Project(2020YFE0204500); National Natural Science Foundation of China(21771173); National Natural Science Foundation of China(22020102003); National Natural Science Foundation of China(22025506)

Abstract

The synthesis of stable single-metal site catalysts with high catalytic activity and selectivity with a controllable coordination environment is still challenging. Due to the different electronegativity of different coordination atoms (N, P, S, etc.), adjusting the coordination atom type of the active metal center is an effective and wise strategy to break the symmetry of the electron density. We adopted a cation exchange strategy to synthesize two Cu single-atom catalytic materials with different coordination structures. This strategy can change the coordination environment of Cu single atom by changing the different organics wrapped around Cu-CdS. This strategy mainly relies on the anion skeleton of sulfide and the N-rich polymer shell to produce a large number of S and N defects during the high-temperature annealing process, and the precise synthesis of a single-metal Cu site catalyst material with rich edge S and N double modification. In these two materials, one single Cu atom has double coordination of sulfur (S) and nitrogen (N), and the other single Cu atom has only a single S coordination. The first shell coordination number of Cu central atom is 4, the structure of Cu-S/N-C is Cu-S1N3, and the structure of Cu-S-C is Cu-S4. The results show that the catalytic performance of Cu-S/N-C in the hydrogenation of nitrobenzene compounds is much better than that of Cu-S-C, that is, the Cu monoatomic materials with S and N double-modified metal sites has better hydrogenation activity than single S-modified metal sites. After 20 min of reaction, under the catalysis of Cu-S/N-C, the conversion rate of nitrobenzene reached 100%, and the activity did not decrease significantly after being recycled for 5 times. It shows that the Cu-S/N-C catalytic material with a single-atom structure we synthesized has good stability. This discovery not only provides a feasible method for adjusting the coordination environment of the central metal to improve the performance of single-atom catalytic materials, but also provides an understanding of the catalytic performance of heteroatom modification.

Cite this article

Lingling Li , Yu Liu , Shuyan Song , Hongjie Zhang . Synthesis of Cu Single Atom with Adjustable Coordination Environment and Its Catalytic Hydrogenation Performance[J]. Acta Chimica Sinica, 2022 , 80(1) : 16 -21 . DOI: 10.6023/A21100467

References

[1]
Shuai, X. M.; Shen, W. Z. Nanoscale Res. Lett. 2012, 7, 1.
[2]
Kundu, S.; Kundu, P.; Van Tendeloo, G.; Ravishankar, N. Small 2014, 10, 3895.
[3]
Zhang, H. B.; Pan, X. L.; Han, X. W.; Liu, X. M.; Wang, X. F.; Shen, W. L.; Bao, X. H. Chem. Sci. 2013, 4, 1075.
[4]
Wang, J.; Lei, M.; Wang, Z.; Liu, Y.; Zhuang, W.; Zhu, W. Appl. Surf. Sci. 2021, 542, 148541.
[5]
Cao, Y. H.; Guo, L.; Dan, M.; Doronkin, D. E.; Han, C. Q.; Rao, Z. Q.; Liu, Y.; Meng, J.; Huang, Z.; Zheng, K. B.; Chen, P.; Dong, F.; Zhou, Y. Nat. Commun. 2021, 12, 1675.
[6]
Wang, X.; Liu, D.; Song, S.; Zhang, H. J. Am. Chem. Soc. 2013, 135, 15864.
[7]
Baskaran, S.; Xu, C.-Q.; Wang, Y.-G.; Garzón, I. L.; Li, J. Sci. China Mater. 2020, 63, 993.
[8]
Li, F.; Li, Y.; Zeng, X. C.; Chen, Z. ACS Catal. 2014, 5, 544.
[9]
Wang, Q. S.; Zhang, Z. S.; Wang, H.; Liu, Y.; Song, S. Y.; Zhang, H. J. Chem. J. Chin. Univ. 2020, 41, 947. (in Chinese)
[9]
( 王启舜, 张泽树, 王欢, 刘宇, 宋术岩, 张洪杰, 高等学校化学学报, 2020, 41, 947.)
[10]
Wang, F.; Song, S. Y.; Li, K.; Li, J. Q.; Pan, J.; Yao, S.; Ge, X.; Feng, J.; Wang, X.; Zhang, H. J. Adv. Mater. 2016, 28, 10679.
[11]
Zhou, H.; Zhao, Y.; Gan, J.; Xu, J.; Wang, Y.; Lv, H.; Fang, S.; Wang, Z.; Deng, Z.; Wang, X.; Liu, P.; Guo, W.; Mao, B.; Wang, H.; Yao, T.; Hong, X.; Wei, S.; Duan, X.; Luo, J.; Wu, Y. J. Am. Chem. Soc. 2020, 142, 12643.
[12]
Deng, Z. J.; Ouyang, Y. F.; Ao, Y. L.; Cai, Q. Acta Chim. Sinica 2021, 79, 649. (in Chinese)
[12]
( 邓卓基, 欧阳溢凡, 敖运林, 蔡倩, 化学学报 2021, 79, 649.)
[13]
Fei, H. L.; Dong, J. C.; Arellano-Jimenez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M.; Yacaman, M. J.; Ajayan, P. M.; Chen, D. L.; Tour, J. M. Nat. Commun. 2015, 6, 8.
[14]
Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Adv. Mater. 2018, 30, 8.
[15]
Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Nat. Catal. 2019, 2, 259.
[16]
Jin, H. H.; Zhou, H.; Ji, P. X.; Zhang, C. T.; Luo, J. H.; Zeng, W. H.; Hu, C. X.; He, D. P.; Mu, S. C. Nano Res. 2020, 13, 818.
[17]
Hu, M. Y.; Li, S. N.; Zheng, S. S.; Liang, X. H.; Zheng, J. X.; Pan, F. J. Phys. Chem. C 2020, 124, 13168.
[18]
Li, L. L.; Chang, X.; Lin, X. Y.; Zhao, Z. J.; Gong, J. L. Chem. Soc. Rev. 2020, 49, 8156.
[19]
Chen, G. B.; Wang, T.; Liu, P.; Liao, Z. Q.; Zhong, H. X.; Wang, G.; Zhang, P. P.; Yu, M. H.; Zschech, E.; Chen, M. W.; Zhang, J.; Feng, X. L. Energ. Environ. Sci. 2020, 13, 2849.
[20]
Lu, X. Q.; Cao, S. F.; Wei, X. F.; Li, S. R.; Wei, S. X. Acta Chim. Sinica 2020, 78, 1001. (in Chinese)
[20]
( 鲁效庆, 曹守福, 魏晓飞, 李邵仁, 魏淑贤, 化学学报 2020, 78, 1001.)
[21]
Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y.; Liang, X.; Chen, W. X.; Dong, J. C.; Wang, D. S.; Li, Y. D. Angew. Chem. Int. Ed. 2020, 60, 3212.
[22]
Chen, K. J.; Liu, K.; An, P. D.; Li, H. J. W.; Lin, Y. Y.; Hu, J. H.; Jia, C. K.; Fu, J. W.; Li, H. M.; Liu, H.; Lin, Z.; Li, W. Z.; Li, J. H.; Lu, Y. R.; Chan, T. S.; Zhang, N.; Liu, M. Nat. Commun. 2020, 11, 4173.
[23]
Zhu, J.; Ren, Z.; Du, S.; Xie, Y.; Wu, J.; Meng, H.; Xue, Y.; Fu, H. Nano Res. 2017, 10, 1819-1831.
[24]
Jia, Y.; Jiang, K.; Wang, H.; Yao, X. Chem. 2019, 5, 1371-1397.
[25]
Wang, Y. S.; Zhao, Y. L.; Zhao, Z. Z.; Lan, X. L.; Xu, J. X.; Xu, W. X.; Duan, Z. K. Acta Chim. Sinica 2019, 77, 661. (in Chinese)
[25]
( 王永胜, 赵云鹭, 赵珍珍, 兰小林, 徐金霞, 徐伟祥, 段正康, 化学学报 2019, 77, 661.)
[26]
Shang, H. S.; Zhou, X. G.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L.; Zhou, D. N.; Zheng, L. R.; Wang, Y.; Zhou, J.; Yang, Z. K.; Cao, R.; Sarangi, R.; Sun, T. T.; Yang, X.; Zheng, X. S.; Yan, W. S.; Zhuang, Z. B.; Li, J.; Chen, W. X.; Wang, D. S.; Zhang, J. T.; Li, Y. D. Nat. Commun. 2020, 11, 3049.
[27]
Li, Y.; Cheng, W.; Su, H.; Zhao, X.; He, J.; Liu, Q. Nano Energy 2020, 77, 105121.
[28]
Zhang, J.; Zhao, Y.; Chen, C.; Huang, Y.-C.; Dong, C.-L.; Chen, C.-J.; Liu, R.-S.; Wang, C.; Yan, K.; Li, Y.; Wang, G. J. Am. Chem. Soc. 2019, 141, 20118.
[29]
Che, M. Catal. Today 2013, 218, 162.
[30]
Ramaswamy, N.; Tylus, U.; Jia, Q.; Mukerjee, S. J. Am. Chem. Soc. 2013, 135, 15443.
[31]
Shang, H.; Sun, W.; Sui, R.; Pei, J.; Zheng, L.; Dong, J.; Jiang, Z.; Zhou, D.; Zhuang, Z.; Chen, W.; Zhang, J.; Wang, D.; Li, Y. Nano Lett. 2020, 20, 5443.
[32]
Li, X.; Bi, W.; Chen, M.; Sun, Y.; Ju, H.; Yan, W.; Zhu, J.; Wu, X.; Chu, W.; Wu, C.; Xie, Y. J. Am. Chem. Soc. 2017, 139, 14889.
[33]
Chen, J. Y.; Li, H.; Fan, C. A.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Adv. Mater. 2020, 32, 2003134.
[34]
Sun, Y.; Silvioli, L.; Sahraie, N. R.; Ju, W.; Li, J.; Zitolo, A.; Li, S.; Bagger, A.; Arnarson, L.; Wang, X.; Moeller, T.; Bernsmeier, D.; Rossmeisl, J.; Jaouen, F.; Strasser, P. J. Am. Chem. Soc. 2019, 141, 12372.
Outlines

/