Single-chain Mechanics of Proline-based Polyesters
Received date: 2021-11-14
Online published: 2021-12-21
Supported by
National Natural Science Foundation of China(21774102)
Proline-based polyesters (PPEs) are novel degradable aliphatic polyesters with high molecular weight and complete recyclability under mild and economic conditions. Because of that, PPEs can be used as a candidate to solve the environmental problems caused by the petroleum-based synthetic polymers. However, the study of the mechanical property of PPEs, which is important for the applications, has not been reported yet. Herein, we utilized atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) and quantum mechanics (QM) calculations to study the mechanical property of PNC12PE (a kind of PPEs) in polar organic solvent at the single-molecule level. PNC12PE was dissolved in methyl isobutyl ketone (MIBK) to a concentration of 10 μg/mL. To prepare the sample for single-molecule AFM, a few drops of the PNC12PE solution were deposited onto the clean glass substrate for 15 min. Then, the sample was rinsed with abundant ethanol to remove the loosely adsorbed polymer. After being dried by air flow, the sample was immediately used in the experiments. The spring constant of each AFM cantilever, which was around 45 pN/nm, was obtained by the thermo- excitation method. No remarkable differences can be found between different force-extension (F-E) curves with various stretching velocities, suggesting that the single-molecule experiments were carried out under quasi-thermodynamic equilibrium conditions. It is found that the experimental single-chain elasticity of PNC12PE consists with the result of the QM calculations and the Kuhn length is structural relevant, indicating that the inherent elasticity of PNC12PE is obtained. The normalized F-E curves of PNC12PE and the QM-freely rotating chain (FRC) model fitting curve of C—C backbone (polyethylene) have little difference, meaning that the main chain of PNC12PE is as soft as the common polymers with C—C backbone. In addition, the pyrrolidine rings in the main chain of PNC12PE are mechanically stable (F<2200 pN) during SMFS experiment, indicating that PNC12PE is suitable for the applications requiring high mechanical stability.
Zheng Gong , Yi Zhang , Hua Lu , Shuxun Cui . Single-chain Mechanics of Proline-based Polyesters[J]. Acta Chimica Sinica, 2022 , 80(1) : 7 -10 . DOI: 10.6023/A21110514
[1] | Hillmyer, M. A.; Tolman, W. B. Acc. Chem. Res. 2014, 47, 2390. |
[2] | Tang, X.; Chen, E. Y. X. Chem 2019, 5, 284. |
[3] | Auras, R.; Harte, B.; Selke, S. Macromol. Biosci. 2004, 4, 835. |
[4] | Nagarajan, V.; Mohanty, A. K.; Misra, M. ACS Sustainable Chem. Eng. 2016, 4, 2899. |
[5] | Zhang, L.; Pratt, R. C.; Nederberg, F.; Horn, H. W.; Rice, J. E.; Waymouth, R. M.; Wade, C. G.; Hedrick, J. L. Macromolecules 2010, 43, 1660. |
[6] | Martin Vaca, B.; Bourissou, D. ACS Macro Lett. 2015, 4, 792. |
[7] | Thillaye du Boullay, O.; Marchal, E.; Martin-Vaca, B.; Cossío, F. P.; Bourissou, D. J. Am. Chem. Soc. 2006, 128, 16442. |
[8] | Wang, R.; Zhang, J.; Yin, Q.; Xu, Y.; Cheng, J.; Tong, R. Angew. Chem., Int. Ed. 2016, 55, 13010. |
[9] | Feng, Q.; Tong, R. J. Am. Chem. Soc. 2017, 139, 6177. |
[10] | Li, M.; Tao, Y.; Tang, J.; Wang, Y.; Zhang, X.; Tao, Y.; Wang, X. J. Am. Chem. Soc. 2019, 141, 281. |
[11] | Yuan, J.; Shi, D.; Zhang, Y.; Lu, J.; Wang, L.; Chen, E.; Lu, H. CCS Chem. 2020, 2, 236. |
[12] | Yuan, J.; Sun, Y.; Wang, J.; Lu, H. Biomacromolecules 2016, 17, 891. |
[13] | Yuan, J.; Xiong, W.; Zhou, X.; Zhang, Y.; Shi, D.; Li, Z.; Lu, H. J. Am. Chem. Soc. 2019, 141, 4928. |
[14] | Tian, Z.; Wang, S.; Lu, H. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100902. |
[15] | Rief, M.; Oesterhelt, F.; Heymann, B.; Gaub, H. E. Science 1997, 275, 1295. |
[16] | Zhang, W. K.; Zhang, X. Prog. Polym. Sci. 2003, 28, 1271. |
[17] | Lv, S.; Dudek, D. M.; Cao, Y.; Balamurali, M. M.; Gosline, J.; Li, H. Nature 2010, 465, 69. |
[18] | Bao, Y.; Luo, Z.; Cui, S. Chem. Soc. Rev. 2020, 49, 2799. |
[19] | Zhang, S.; Qian, H. J.; Liu, Z.; Ju, H.; Lu, Z. Y.; Zhang, H.; Chi, L.; Cui, S. Angew. Chem., Int. Ed. 2019, 58, 1659. |
[20] | Cai, W.; Xu, D.; Qian, L.; Wei, J.; Xiao, C.; Qian, L.; Lu, Z. Y.; Cui, S. J. Am. Chem. Soc. 2019, 141, 9500. |
[21] | Lyu, X.; Song, Y.; Feng, W.; Zhang, W. ACS Macro Lett. 2018, 7, 762. |
[22] | Dietz, H.; Rief, M. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 1244. |
[23] | Cui, S.; Albrecht, C.; Kühner, F.; Gaub, H. E. J. Am. Chem. Soc. 2006, 128, 6636. |
[24] | Yu, M.; Qian, L.; Cui, S. J. Phys. Chem. B 2017, 121, 4257. |
[25] | Oesterhelt, F.; Rief, M.; Gaub, H. E. New J. Phys. 1999, 1, 6. |
[26] | Liu, C. J.; Cui, S.; Wang, Z. Q.; Zhang, X. J. Phys. Chem. B 2005, 109, 14807. |
[27] | Deng, Y.; Wu, T.; Wang, M.; Shi, S.; Yuan, G.; Li, X.; Chong, H.; Wu, B.; Zheng, P. Nat. Commun. 2019, 10, 2775. |
[28] | Fu, L.; Wang, H.; Li, H. CCS Chem. 2019, 1, 138. |
[29] | Huang, W.; Wu, X.; Gao, X.; Yu, Y.; Lei, H.; Zhu, Z.; Shi, Y.; Chen, Y.; Qin, M.; Wang, W.; Cao, Y. Nat. Chem. 2019, 11, 310. |
[30] | Xiang, W.; Li, Z.; Xu, C.; Li, J.; Zhang, W.; Xu, H. Chem. Asian J. 2019, 14, 1481. |
[31] | Xia, J.; Li, H.; Xu, H. Acta Polym. Sin. 2020, 51, 205. (in Chinese) |
[31] | ( 夏嘉豪, 李宏斌, 许华平, 高分子学报 2020, 51, 205.) |
[32] | Xing, H.; Li, Z.; Wang, W.; Liu, P.; Liu, J.; Song, Y.; Wu, Z. L.; Zhang, W.; Huang, F. CCS Chem. 2020, 2, 513. |
[33] | Yu, M.; Zhao, W.; Zhang, K.; Guo, X. Acta Chim. Sinica 2021, 79, 500. (in Chinese) |
[33] | ( 于淼, 赵武, 张凯, 郭鑫, 化学学报 2021, 79, 500.) |
[34] | Wang, K.; Pang, X.; Cui, S. Langmuir 2013, 29, 4315. |
[35] | Qian, L.; Cai, W.; Xu, D.; Bao, Y.; Lu, Z.-Y.; Cui, S. Macromolecules 2019, 52, 5006. |
[36] | Wei, J.; Cai, W.; Cui, S. Acta Chim. Sinica 2019, 77, 189. (in Chinese) |
[36] | ( 危军浩, 蔡皖豪, 崔树勋, 化学学报 2019, 77, 189.) |
[37] | Hugel, T.; Seitz, M. Macromol. Rapid Commun. 2001, 22, 989. |
[38] | Bao, Y.; Qian, H. J.; Lu, Z. Y.; Cui, S. Nanoscale 2014, 6, 13421. |
[39] | Baird, M. S.; Lindsay, D. G.; Reese, C. B. J. Chem. Soc. C 1969, 1173. |
[40] | Diesendruck, C. E.; Steinberg, B. D.; Sugai, N.; Silberstein, M. N.; Sottos, N. R.; White, S. R.; Braun, P. V.; Moore, J. S. J. Am. Chem. Soc. 2012, 134, 12446. |
[41] | Ghanem, M. A.; Basu, A.; Behrou, R.; Boechler, N.; Boydston, A. J.; Craig, S. L.; Lin, Y.; Lynde, B. E.; Nelson, A.; Shen, H.; Storti, D. W. Nat. Rev. Mater. 2021, 6, 84. |
[42] | Gossweiler, G. R.; Hewage, G. B.; Soriano, G.; Wang, Q.; Welshofer, G. W.; Zhao, X.; Craig, S. L. ACS Macro Lett. 2014, 3, 216. |
[43] | Wu, D.; Lenhardt, J. M.; Black, A. L.; Akhremitchev, B. B.; Craig, S. L. J. Am. Chem. Soc. 2010, 132, 15936. |
/
〈 |
|
〉 |