Review

Research Progress on Nano Photonics Technology-based SARS-CoV-2 Detection

  • Xu Yang ,
  • Zeying Zhang ,
  • Meng Su ,
  • Yanlin Song
Expand
  • aKey Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
    bUniversity of Chinese Academy of Sciences, Beijing 100049, China
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2021-10-21

  Online published: 2021-12-23

Supported by

National Key R&D Program of China(2018YFA0208501); National Natural Science Foundation of China(51803217); National Natural Science Foundation of China(51773206); National Natural Science Foundation of China(91963212); National Natural Science Foundation of China(51961145102); National Natural Science Foundation of China(22075296); Youth Innovation Promotion Association CAS(2020032); Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202005); Beijing Nova Program from Beijing Municipal Science & Technology Commission(Z201100006820037); Beijing Nova Program from Beijing Municipal Science & Technology Commission(Z211100002121001)

Abstract

The worldwide outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the infection even death of people all over the world, which has gravely affected our daily life. Globalization of trade and convenient transportation immensely accelerate the propagation of the epidemic, which brings severe difficulties to prevent the epidemic. Therefore, rapid and accurate diagnosis of infected persons and screening of asymptomatic persons play an important role. At present, the most widely used method for the detection of SARS-CoV-2 is reverse transcription-polymerase chain reaction (RT-PCR), which still has some problems including complicated sample storage and transportation, complex operations and so on. These shortcomings cause the hindrances to achieve fast, simple, efficient diagnostic testing under the normalization of the epidemic. In the past few years, with the development of nanotechnology, bio-sensing methods based on nano photonics have become a research hotspot. Label-free optical methods have been widely explored for bio-sensing including virus detection, such as surface plasmon resonance (SPR), surface enhanced Raman scattering (SERS), whispering gallery mode (WGM) and colorimetry. These approaches offer available alternatives to improve the speed, sensitivity, and accuracy of optical bio-sensing, owing to the enhanced interaction between the nanostructure and the biomarkers. This review summarizes these nano photonics-based bio-sensing technologies for the detection of SARS-CoV-2. Moreover, the detection mechanism of biomarkers by nano photonics is explained, and the further development trends are discussed. In view of the difficulties in manufacturing nano photonics structures, a new strategy of large-area preparation of nano photonics structures using nano green printing technology is proposed, which provides theoretical and technical support for accurate and effective prevention and control of the epidemic diseases.

Cite this article

Xu Yang , Zeying Zhang , Meng Su , Yanlin Song . Research Progress on Nano Photonics Technology-based SARS-CoV-2 Detection[J]. Acta Chimica Sinica, 2022 , 80(1) : 80 -88 . DOI: 10.6023/A21100469

References

[1]
Johns Hopkins University & Medicine, COVID-19 Dashboard[DB/OL], [2021-10-10], https://coronavirus.jhu.edu/map.html
[2]
Carter, L. J.; Garner, L. V.; Smoot, J. W.; Li, Y.; Zhou, Q.; Saveson, C. J.; Sasso, J. M.; Gregg, A. C.; Soares, D. J.; Beskid, T. R.; Jervey, S. R.; Liu, C. ACS Cent. Sci. 2020, 6, 591
[3]
Daaboul, G. G.; Lopez, C. A.; Yurt, A.; Goldberg, B. B.; Connor, J. H.; Ünlü, M. S. IEEE J. Ssl. Top. Quant. 2011, 18, 1422.
[4]
Tymm, C.; Zhou, J.; Tadimety, A.; Burklund, A.; Zhang, J. X. J. Cell. Mol. Bioeng. 2020, 13, 313.
[5]
Taha, B. A.; Al Mashhadany, Y.; Bachok, N. N.; Bakar, A. A.; Hafiz Mokhtar, M. H.; Dzulkefly Bin Zan, M. S.; Arsad, N. Diagnostics 2021, 11, 1119.
[6]
Tokel, O.; Inci, F.; Demirci, U. Chem. Rev. 2014, 114, 5728.
[7]
Nguyen, H. H.; Park, J.; Kang, S.; Kim, M. Sensors 2015, 15, 10481.
[8]
Su, Y.-Y.; Peng, T.-H.; Xing, F.-F.; Li, D.; Fan, C.-H. Acta Chim. Sinica 2017, 75, 1036 ; (in Chinese)
[8]
( 苏莹莹, 彭天欢, 邢菲菲, 李迪, 樊春海, 化学学报 2017, 75, 1036.)
[9]
Zong, C.; Xu, M.; Xu, L.-J.; Wei, T.; Ma, X.; Zheng, X.-S.; Hu, R.; Ren, B. Chem. Rev. 2018, 118, 4946.
[10]
Zheng, X.-S.; Jahn, I. J.; Weber, K.; Cialla-May, D.; Popp, J. Spectrochim. Acta A 2018, 197, 56.
[11]
Perumal, J.; Wang, Y.; Attia, A. B. E.; Dinish, U. S.; Olivo, M. Nanoscale 2021, 13, 553.
[12]
He, H.; Zhou, L.-L.; Liu, Z. Acta Chim. Sinica 2021, 79, 45 ; (in Chinese)
[12]
( 贺晖, 周玲俐, 刘震, 化学学报 2021, 79, 45.)
[13]
Righini, G. C.; Soria, S. Sensors 2016, 16, 905.
[14]
Jiang, X.; Qavi, A. J.; Huang, S. H.; Yang, L. Matter 2020, 3, 371.
[15]
Toropov, N.; Cabello, G.; Serrano, M. P.; Gutha, R. R.; Rafti, M.; Vollmer, F. Light Sci. Appl. 2021, 10, 1.
[16]
Mariani, S.; Minunni, M. Anal. Bioanal. Chem. 2014, 406, 2303.
[17]
Syal, K.; Iriya, R.; Yang, Y.; Yu, H.; Wang, S.; Haydel, S. E.; Chen, H.-Y.; Tao, N. ACS Nano 2016, 10, 845.
[18]
Syal, K.; Wang, W.; Shan, X.; Wang, S.; Chen, H.-Y.; Tao, N. Biosens. Bioelectron. 2015, 63, 131.
[19]
Wang, S.; Shan, X.; Patel, U.; Huang, X.; Lu, J.; Li, J.; Tao, N. Nat. Nanotechnol. 2010, 107, 16028.
[20]
Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G. A.; Wang, J. ACS Nano 2020, 14, 5268.
[21]
Liu, Y.-N.; Lv, Z.-T.; Yang, S.-Y.; Liu, X.-W. Environ. Sci. Technol. 2021, 55, 4115.
[22]
Masterson, A. N.; Muhoberac, B. B.; Gopinadhan, A.; Wilde, D. J.; Deiss, F. T.; John, C. C.; Sardar, R. Anal. Chem. 2021, 93, 8754.
[23]
Yu, H.; Shan, X.; Wang, S.; Chen, H.; Tao, N. ACS Nano 2014, 8, 3427.
[24]
Li, X.; Wang, Y.; Wang, L.; Wei, Q. Chem. Commun. 2014, 50, 5049.
[25]
Zhou, X. L.; Yang, Y.; Wang, S.; Liu, X. W. Angew. Chem. Int. Ed. 2020, 59, 1776.
[26]
Yang, Y.; Shen, G.; Wang, H.; Li, H.; Zhang, T.; Tao, N.; Ding, X.; Yu, H. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 10275.
[27]
Liu, C.; Chan, C.; Ong, H. Opt. Commun. 2016, 378, 28.
[28]
Son, T.; Lee, C.; Seo, J.; Choi, I.-H.; Kim, D. Opt. Lett. 2018, 43, 959.
[29]
Son, T.; Lee, C.; Moon, G.; Lee, D.; Cheong, E.; Kim, D. Biosens. Bioelectron. 2019, 146, 111738.
[30]
Kuai, Y.; Chen, J.; Tang, X.; Xiang, Y.; Lu, F.; Kuang, C.; Xu, L.; Shen, W.; Cheng, J.; Gui, H. Sci. Adv. 2019, 5, eaav5335.
[31]
Wu, B.; Jiang, R.; Wang, Q.; Huang, J.; Yang, X.; Wang, K.; Li, W.; Chen, N.; Li, Q. Chem. Commun. 2016, 52, 3568.
[32]
Na, H.-K.; Wi, J.-S.; Son, H. Y.; Ok, J. G.; Huh, Y.-M.; Lee, T. G. Biosens. Bioelectron. 2018, 113, 39.
[33]
Zhang, P.; Ma, G.; Wan, Z.; Wang, S. ACS Sensors 2021, 6, 1357.
[34]
Nag, P.; Sadani, K.; Mukherji, S. Trans. Indian Natl. Acad. Eng. 2020, 5, 233.
[35]
Murugan, D.; Bhatia, H.; Sai, V. V. R.; Satija, J. Trans. Indian Natl. Acad. Eng. 2020, 5, 211.
[36]
Yang, Y.; Zhai, C.; Zeng, Q.; Khan, A. L.; Yu, H. Anal. Chem. 2020, 92, 4884.
[37]
Wang, X.; Zeng, Q.; Xie, F.; Wang, J.; Yang, Y.; Xu, Y.; Li, J.; Yu, H. Anal. Chem. 2021, 93, 7399.
[38]
Sinha, S. S.; Jones, S.; Pramanik, A.; Ray, P. C. Acc. Chem. Res. 2016, 49, 2725.
[39]
Sivashanmugan, K.; Liao, J.-D.; You, J.-W.; Wu, C.-L. Sens. Actuators B Chem. 2013, 181, 361.
[40]
Peng, Y.; Lin, C.; Long, L.; Masaki, T.; Tang, M.; Yang, L.; Liu, J.; Huang, Z.; Li, Z.; Luo, X.; Lombardi, J. R.; Yang, Y. Nanomicro Lett. 2021, 13, 52.
[41]
Yang, Y.; Peng, Y.; Lin, C.; Long, L.; Hu, J.; He, J.; Zeng, H.; Huang, Z.; Li, Z.-Y.; Tanemura, M. Nanomicro Lett. 2021, 13, 1.
[42]
Chen, H.; Park, S.-G.; Choi, N.; Kwon, H.-J.; Kang, T.; Lee, M.-K.; Choo, J. ACS Sensors 2021, 6, 2378.
[43]
Liu, B.; Wang, K.; Gao, B.; Lu, J.; Li, H.; Zhao, X. ACS Appl. Nano Mater. 2019, 2, 3177.
[44]
Gao, Z.-G.; Zheng, T.-T.; Deng, J.; Li, X.-R.; Qu, Y.-Y.; Lu, Y.; Liu, T.-J.; Luo, Y.; Zhao, W.-J.; Lin, B.-C. Acta Chim. Sinica 2017, 75, 355 ; (in Chinese)
[44]
( 高志刚, 郑婷婷, 邓九, 李晓瑞, 曲玥阳, 陆瑶, 刘婷娇, 罗勇, 赵伟杰, 林炳承, 化学学报 2017, 75, 355.)
[45]
Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Chem. Phys. Lett. 1974, 26, 163.
[46]
Li, J.; Wuethrich, A.; Sina, A. A. I.; Cheng, H.-H.; Wang, Y.; Behren, A.; Mainwaring, P. N.; Trau, M. Nat. Commun. 2021, 12, 1087.
[47]
Kim, S.; Kim, T. G.; Lee, S. H.; Kim, W.; Bang, A.; Moon, S. W.; Song, J.; Shin, J.-H.; Yu, J. S.; Choi, S. ACS Appl. Mater. Interfaces 2020, 12, 7897.
[48]
Zhao, F.; Wang, W.; Zhong, H.; Yang, F.; Fu, W.; Ling, Y.; Zhang, Z. Talanta 2021, 221, 121465.
[49]
Huang, S.; Ling, X.; Liang, L.; Song, Y.; Fang, W.; Zhang, J.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Nano Lett. 2015, 15, 2892.
[50]
Silver, A.; Kitadai, H.; Liu, H.; Granzier-Nakajima, T.; Terrones, M.; Ling, X.; Huang, S. Nanomaterials 2019, 9, 516.
[51]
Liu, W.; Bai, H.; Li, X.; Li, W.; Zhai, J.; Li, J.; Xi, G. J. Phys. Chem. Lett. 2018, 9, 4096.
[52]
Cong, S.; Wang, Z.; Gong, W.; Chen, Z.; Lu, W.; Lombardi, J. R.; Zhao, Z. Nat. Commun. 2019, 10, 678.
[53]
Ni, Y.-X.; Zhang, C.-J.; Yuan, Y.-X.; Xu, M.-M.; Yao, J.-L. Acta Chim. Sinica 2019, 77, 641 ; (in Chinese)
[53]
( 倪宇欣, 张晨杰, 袁亚仙, 徐敏敏, 姚建林, 化学学报 2019, 77, 641.)
[54]
Huang, S.; Wu, C.; Wang, Y.; Yang, X.; Yuan, R.; Chai, Y. Sens. Actuators B Chem. 2021, 339, 129843.
[55]
Wang, M.; Yan, X.; Wei, D.-Q.; Liang, L.-J.; Wang, Y.-P. Acta Chim. Sinica 2019, 77, 184 ; (in Chinese)
[55]
( 王猛, 闫昕, 韦德泉, 梁兰菊, 王岳平, 化学学报 2019, 77, 184.)
[56]
Ma, C.; Wu, J.-W.; Zhu, L.; Han, X.-X.; Ruan, W.-D.; Song, W.; Wang, X.; Zhao, B. Acta Chim. Sinica 2019, 77, 1024 ; (in Chinese)
[56]
( 马超, 武佳炜, 朱琳, 韩晓霞, 阮伟东, 宋薇, 王旭, 赵冰, 化学学报 2019, 77, 1024.)
[57]
Hwang, A.; Kim, E.; Moon, J.; Lee, H.; Lee, M.; Jeong, J.; Lim, E.-K.; Jung, J.; Kang, T.; Kim, B. ACS Appl. Mater. Interfaces 2019, 11, 18960.
[58]
Jadhav, S. A.; Biji, P.; Panthalingal, M. K.; Krishna, C. M.; Rajkumar, S.; Joshi, D. S.; Sundaram, N. Med. Hypotheses 2021, 146, 110356.
[59]
Ghali, H.; Chibli, H.; Nadeau, J. L.; Bianucci, P.; Peter, Y.-A. Biosensors 2016, 6, 20.
[60]
Anderson, M. E.; O'Brien, E. C.; Grayek, E. N.; Hermansen, J. K.; Hunt, H. K. Biosensors 2015, 5, 562.
[61]
He, L.; Özdemir, Ş. K.; Zhu, J.; Kim, W.; Yang, L. Nat. Nanotechnol. 2011, 6, 428.
[62]
Hassan, M. M.; Baten, M. Z. Opt. Express 2021, 29, 25745.
[63]
Schubert, M.; Steude, A.; Liehm, P.; Kronenberg, N. M.; Karl, M.; Campbell, E. C.; Powis, S. J.; Gather, M. C. Nano Lett. 2015, 15, 5647.
[64]
Toropov, N.; Vollmer, F. Light Sci. Appl. 2021, 10, 77.
[65]
Santiago-Cordoba, M. A.; Boriskina, S. V.; Vollmer, F.; Demirel, M. C. Appl. Phys. Lett. 2011, 99, 073701.
[66]
Baaske, M. D.; Vollmer, F. Nat. Photonics 2016, 10, 733.
[67]
He, L.; Özdemir, Ş. K.; Zhu, J.; Yang, L. Phys. Rev. A 2010, 82, 053810.
[68]
Wang, T.; Yang, X.; Liu, X.-F.; Lei, F.-C.; Gao, M.; Hu, Y.-Q.; Long, G.-L. Acta Phys. Sinica 2015, 64, 97 ; (in Chinese)
[68]
( 王涛, 杨旭, 刘晓斐, 雷府川, 高铭, 胡蕴琪, 龙桂鲁, 物理学报, 2015, 64, 97.)
[69]
Yue, Y.; Ding, H.; Chen, C. J. Biophotonics 2021, 14, e202000338.
[70]
Jiang, Y.; Hu, M.; Liu, A.-A.; Lin, Y.; Liu, L.; Yu, B.; Zhou, X.; Pang, D.-W. ACS Sensors 2021, 6, 1086.
[71]
Ji, C.; Xue, S.; Yu, M.; Liu, J.; Zhang, Q.; Zuo, F.; Zheng, Q.; Zhao, L.; Zhang, H.; Cao, J.; Wang, K.; Liu, W.; Zheng, W. ACS Omega 2021, 6, 8837.
[72]
Gee, C. T.; Kehoe, E.; Pomerantz, W. C. K.; Penn, R. L. J. Chem. Educ. 2017, 94, 941.
[73]
Miyamoto, S.; Sano, S.; Takahashi, K.; Jikihara, T. Anal. Biochem. 2015, 473, 28.
[74]
Kaarj, K.; Akarapipad, P.; Yoon, J.-Y. Sci. Rep. 2018, 8, 12438.
[75]
Park, G.-S.; Ku, K.; Baek, S.-H.; Kim, S.-J.; Kim, S. I.; Kim, B.-T.; Maeng, J.-S. J. Mol. Diagn. 2020, 22, 729.
[76]
Cai, J.; Ding, L.; Gong, P.; Huang, J. Nanotechnology 2019, 31, 095501.
[77]
Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M. B.; Pan, D. ACS Nano 2020, 14, 7617.
[78]
Ventura, B. D.; Cennamo, M.; Minopoli, A.; Campanile, R.; Censi, S. B.; Terracciano, D.; Portella, G.; Velotta, R. ACS Sensors 2020, 5, 3043.
[79]
Huang, Y.; Li, F.-Y.; Qin, M.; Jiang, L.; Song, Y.-L. Angew. Chem. Int. Ed. 2013, 52, 7296.
[80]
Hou, J.; Zhang, H.-C.; Yang, Q.; Li, M.-Z.; Song, Y.-L.; Jiang, L. Angew. Chem. Int. Ed. 2014, 53, 5791.
[81]
Qin, M.; Huang, Y.; Li, Y.-N.; Su, M.; Chen, B.-D.; Sun, H.; Yong, P.-Y.; Ye, C.-Q.; Li, F.-Y.; Song, Y.-L. Angew. Chem. Int. Ed. 2016, 55, 6911.
[82]
Su, M.; Song, Y.-L. Chem. Rev. 2021, DOI: 10.1021/acs.chemrev.1c00303.
[83]
Zhang, Z.-Y.; Wang, H.-D.; Su, M.; Sun, Y.-L.; Tan, S.-J.; Ponkratova, E.; Zhao, M.; Wu, D.-D.; Wang, K.-Y.; Pan, Q.; Chen, B.-D.; Zuev, D.; Song, Y.-L. Angew. Chem. Int. Ed. 2021, 133, 24436.
Outlines

/