Molecular Engineering Design of the First Sr2Be2B2O7-type Fluoride Carbonates AMgLi2(CO3)2F (A=K, Rb) as Deep-Ultraviolet Birefringent Crystal※
Received date: 2021-12-09
Online published: 2021-12-31
Supported by
National Natural Science Foundation of China(21975255); Natural Science Foundation of Fujian Province(2019J01020758); Natural Science Foundation of Fujian Province(2021J011080); Foundation of Fujian Educational Committee(JT180331); Scientific Research Foundation of Fujian University of Technology(GY-Z20042); Youth Innovation Promotion Association CAS(2019303)
Molecular engineering design is an effective strategy to develop new compounds and optimize the crystal structure by atomic-scale manipulation. In this work, a novel series of fluoride carbonates AMgLi2(CO3)2F (A=K, Rb) are rationally developed by taking Sr2Be2B2O7 (SBBO) as the parent compound. Their crystal structures are established by single crystal X-ray diffraction. KMgLi2(CO3)2F belongs to centrosymmetric hexagonal system and crystallizes in P63/m with a=b=0.4775 nm, c=1.4782 nm. RbMgLi2(CO3)2F crystallizes in the centrosymmetric trigonal space group P3̅1c with a=b=0.4787 nm, c=1.4966 nm. In all of their structures, the a-b plane is the infinite lattice layer [Li3C3O6F3]∞ made up of [CO3] and [LiO3F] anionic groups. The adjacent layers are further connected with fluorine bridge atoms to form [Li6C6O12F3]∞ double layers. In the structure of KMgLi2(CO3)2F, all the [CO3] groups not only parallel to a-b plane but also align in the exactly same orientation in the same double layers. While the [CO3] groups in RbMgLi2(CO3)2F are parallel to a-b plane but align in the different orientation. But anyway, their structural characteristic is greatly beneficial to improve the layering-growth habit and eliminate polymorphism of a crystal. Since AMgLi2(CO3)2F (A=K, Rb) inherit the beneficial layered structure of SBBO, AMgLi2(CO3)2F (A=K, Rb) should have superior optical properties including short ultraviolet (UV) absorption edges and large birefringences. In order to confirm inference, ultraviolet-visible diffuse reflectance spectroscopy data were recorded at room temperature using a powder sample with BaSO4 as a standard (100% reflectance) on a PerkinElmer Lambda-950 ultraviolet visible-near infrared spectrophotometer over the scan range 200—2500 nm. The results showed KMgLi2(CO3)2F and RbMgLi2(CO3)2F exhibited a wide transparency window, >80%, from 200 to 2500 nm, indicating that both of them had short UV cutoff edges below 200 nm. The birefringent values of the titled compounds were measured on a Nikon ECLIPSE LV100 POL polarizing microscope, which revealed that KMgLi2(CO3)2F and RbMgLi2(CO3)2F had large birefringences (0.111@546.1 nm for KMgLi2(CO3)2F and 0.113@546.1 nm for RbMgLi2(CO3)2F, respectively). In addition, theoretical cal-culations on electronic structure were carried out to explain the experimental results. Our preliminary results indicate that both compounds have promising applications as deep-UV birefringent materials.
Key words: structure design; deep UV; fluoride carbonate; birefringent crystal
Yunxia Song , Fei Liang , Haotian Tian , Yan Wu , Min Luo . Molecular Engineering Design of the First Sr2Be2B2O7-type Fluoride Carbonates AMgLi2(CO3)2F (A=K, Rb) as Deep-Ultraviolet Birefringent Crystal※[J]. Acta Chimica Sinica, 2022 , 80(2) : 105 -109 . DOI: 10.6023/A21120550
[1] | (a) Tagaya, A.; Ohkita, H.; Mukoh, M.; Sakaguchi, R.; Koike, Y. Science 2003, 301, 812. |
[1] | (b) Niu, S. Y.; Joe, G.; Zhao, H.; Zhou, Y. C.; Orvis, T.; Huyan, H. X.; Salman, J.; Mahalingam, K.; Urwin, B.; Wu, J. B.; Liu, Y.; Tiwald, T. E.; Cronin, S. B.; Howe, B. M.; Mecklenburg, M.; Haiges, R.; Singh, D. J.; Wang, H.; Kats, M. A.; Ravichandran, J. Nat. Photonics 2018, 12, 392. |
[1] | (c) Flossmann, F.; Schwarz, U. T.; Maier, M.; Dennis, M. R. Phys. Rev. Lett. 2005, 95, 253901. |
[2] | Luo, H. T.; Tkaczyk, T.; Dereniak, E. L.; Oka, K.; Sampson, R. Opt. Lett. 2006, 31, 616. |
[3] | Devore, J. R. J. Opt. Soc. Am. 1951, 41, 416. |
[4] | Ghosh, G. Opt. Commun. 1999, 163, 95. |
[5] | Zhou, G. Q.; Xu, J.; Chen, X. D.; Zhong, H. Y.; Wang, S. T.; Xu, K.; Deng, P. Z.; Gan, F. X. J. Cryst. Growth 1998, 191, 517. |
[6] | (a) Elliott, D. L. Ultraviolet Laser Technology and Applications, Academic, Wayland, 2014. |
[6] | (b) Nomura, H.; Furutono, Y. Microelectron. Eng. 2008, 85, 1671. |
[6] | (c) Kang, G. G.; Tan, Q. F.; Jin, G. F. Opt. Commun. 2010, 283, 4531. |
[6] | (d) McCunn, L. R.; Bennett, D. I. G.; Butler, L. J.; Fan, H. Y.; Aguirre, F.; Pratt, S. T. J. Phys. Chem. A 2006, 110, 843. |
[6] | (e) Zhang, W. Y.; Zhang, Z. Z.; Jin, W. Q.; Zhang, R. N.; Cheng, M.; Yang, Z. H.; Pan, S. L. Sci. China Chem. 2021, 64, 1498. |
[6] | (f) Kang, L.; Liang, F.; Lin, Z.; Huang, B. Sci. China Mater. 2020, 63, 1597. |
[7] | (a) Dodge, M. J. Appl.Opt. 1984, 23, 1980. |
[7] | (b) Cai, Y. M.; Wang, X. Z.; Huang, H. J. Chin. J. Lasers 2014, 41, 100002. |
[7] | (c) Steinrnetz, D. L.; Phillips, W. G.; Wirick, M.; Forbes, F. F. Appl. Opt. 1967, 6, 1001. |
[8] | (a) Zhou, G. Q.; Xu, J.; Chen, X. D.; Zhong, H. Y.; Wang, S. T.; Xu, K.; Deng, P. Z.; Gan, F. X. J. Cryst. Growth 1998, 191, 517. |
[8] | (b) Liu, J. F.; He, X. M.; Xu, J.; Zhou, G. Q.; Zhou, S. M.; Zhao, G. J.; Li, S. Z. J. Cryst. Growth 2004, 260, 486. |
[8] | (c) Appel, R.; Dyer, C. D.; Lockwood, J. N. Appl. Opt. 2002, 41, 2470. |
[9] | (a) Zhang, H.; Zhang, M.; Pan, S.; Yang, Z.; Wang, Z.; Bian, Q.; Hou, X.; Yu, H.; Zhang, F.; Wu, K.; Yang, F.; Peng, Q.; Xu, Z.; Chang, K. B.; Poeppelmeier, K. R. Cryst. Growth Des. 2015, 15, 523. |
[9] | (b) Zhang, S.; Wu, X.; Song, Y.; Ni, D.; Hu, B.; Zhou, T. J. Cryst. Growth 2003, 252, 246. |
[9] | (c) Gao, M.; Wu, H.; Yu, H.; Hu, Z. G.; Wang, J. Y.; Wu, Y. C. Sci. China Chem. 2021, 64, 1184. |
[9] | (d) Zhang, X.; Wu, H.; Yu, H.; Yang, Z. H.; Pan, S. L. Sci. China Mater. 2019, 62, 1023. |
[10] | Mei, L.; Huang, X.; Wang, Y.; Wu, Q.; Wu, B.; Chen, C. Z. Kristallogr. 1995, 210, 93. |
[11] | Chen, C. T.; Wang, Y. B.; Wu, B. C.; Wu, K. C.; Zeng, W. L.; Yu, L. H. Nature 1995, 373, 322. |
[12] | Luo, M.; Wang, G.; Lin, C.; Ye, N.; Zhou, Y.; Cheng, W. Inorg. Chem. 2015, 45, 8098. |
[13] | Hu, Z. G.; Higashiyama, T.; Yoshimura, M.; Yap, Y. K.; Mori, Y.; Sasaki, T. Jpn. J. Appl. Phys. 1998, 37, L1093. |
[14] | Ye, N.; Zeng, W.; Wu, B.; Chen, C. T. Proceedings of SPIE - The International Society for Optical Engineering, Society of Photo- optical Instrumentation Engineers, 1998, pp. 21-23. |
[15] | (a) Zhao, S. G.; Kang, L.; Shen, Y. G.; Wang, X. D.; Asghar, M. A.; Lin, Z. S.; Xu, Y. Y.; Hong, S. Y.; Hong, M. C.; Luo, J. H. J. Am. Chem. Soc., 2016, 138, 2961. |
[15] | (b) Yu, H.; Young, J.; Wu, H.; Zhang, W.; Rondinelli, J. M.; Halasyamani, S. Adv. Opt. Mater. 2017, 5, 1700840. |
[15] | (c) Wu, H.; Yu, H.; Pan, S.; Halasyamani, P. S. Inorg. Chem. 2017, 56, 8755. |
/
〈 |
|
〉 |