Study on the Regulation and Mechanism of the Vanadium Substituted Polyoxometalates of H6[P2Mo18O62] on Melanogenesis of Mouse Melanoma Cell B16
Received date: 2021-11-22
Online published: 2022-01-12
Supported by
National Natural Science Foundation of China(21871110); Natural Science Foundation of Fujian Province(2020J01674)
Melanin is the main cause of pigmentation in human skin, eyes and hair. In order to study the effects of polyoxometalates on the tyrosinase activity and melanin content of B16 mouse melanocytes, five polyoxometalates with Dawson structure with different vanadium substitutions were synthesized. Taking B16 mouse melanoma cells as a model, which was divided into blank group, control group and polyoxometalates experiment group (12.5, 25, 50, 100, 200 μmol/L), the cell viability was detected by thiazolyl blue (MTT) method, and the diphenyl picryl hydrazinyl (DPPH) free radical scavenging ability and the melanin content and tyrosinase activity in B16 melanoma cells were determined by enzyme labeling method. Finally, molecular docking was used to simulate the binding mechanism of polyoxometalate and tyrosinase. The results of the study showed that two phosphomolybdic acids (H7[P2Mo17VO62] and H8[P2Mo16V2O62]) are highly effective melanin production inhibitors, and the best inhibitory rates of melanin synthesis at a concentration of 200 μmol/L are 74.40% and 75.14%, respectively, which have an effect on the cell. The inhibitory rates of tyrosinase activity were 35.71% and 40.00%. With the increase of the number of vanadium atoms substituted, the two inhibitory activities gradually decreased. MTT reduction experiments show that H7[P2Mo17VO62] and H8[P2Mo16V2O62] are not toxic to cells, and the cell viability is greater than 80%. Both polyoxometalates (POMs) have strong DPPH scavenging ability, with IC50 of 1.683 and 2.800 mg/mL, respectively. Molecular docking simulation proved that all five polyoxometalates can form stable complexes with tyrosinase, and the main force of the combination are non-covalent bonds such as van der Waals forces and hydrogen bonds. In addition, the docking score is less than –146 kJ/mol. Based on the above research, H7[P2Mo17VO62] and H8[P2Mo16V2O62] can effectively inhibit the production of melanin in B16 mouse melanoma cells. The mechanism is related to the inhibition of tyrosinase activity. We believe that they are promising candidates for the development of safe cosmetics.
Key words: polyoxometalates; B16 melanocytes; melanin; molecular docking; tyrosinase
Xiangsong Chen , Die Shuai , Zedong Jiang , Han Yang , Dan Luo , Hui Ni , Li Wang , Bingnian Chen . Study on the Regulation and Mechanism of the Vanadium Substituted Polyoxometalates of H6[P2Mo18O62] on Melanogenesis of Mouse Melanoma Cell B16[J]. Acta Chimica Sinica, 2022 , 80(2) : 116 -125 . DOI: 10.6023/A21110528
[1] | Zhang, J.-L.; Shi, C.-Z.; Shan, F.; Shi, N.-N.; Ye, W.; Zhuo, Y.-Y.; Zhang, Y.-J.; Zhang, Z.-Y.; Shi, Y.-X.; Peng, C. Chem. Eng. J. 2021, 408, 127282. |
[2] | Kudo, M.; Kobayashi, N. K.; Tsuji, N. K. Plos One 2017, 12, e0171513. |
[3] | Zhang, Q.-J.; Wang, Y.-Y.; Zhao, Y.-X.; Ma, C.-H.; Xu, X.; Gu, W.; Yang, Y.-Q.; Wang, S.-F. Chin. J. Org. Chem. 2019, 39, 2616. (in Chinese) |
[3] | ( 张强健, 王芸芸, 赵雨珣, 马崇慧, 徐徐, 谷文, 杨益琴, 王石发, 有机化学, 2019, 39, 2616.) |
[4] | Peng, H.-Y.; Wang, T.; Li, G.-R.; Huang, J. Chem. J. Chin. Univ. 2021, 42, 3357. (in Chinese) |
[4] | ( 彭海月, 汪婷, 李国瑞, 黄静, 高等学校化学学报, 2021, 42, 3357.) |
[5] | Machado, D.; Shishido, S. M.; Queiroz, K. C. S.; Oliveira, D. N.; Faria, A. L. C.; Catharino, R. R.; Spek, C. A.; Ferreira, C. V. PLoS One 2013, 8, e54269. |
[6] | Nasti, T. H.; Timares, L. Photochem. Photobiol. 2015, 91, 188. |
[7] | Huang, L.; Liu, M.-Y.; Huang, H.-Y.; Wen, Y.-Q.; Zhang, X.-Y.; Wei, Y. Biomacromolecules 2018, 19, 1858. |
[8] | Shuai, D.; Zhao, M.-J. Chen, B.-N.; Wang, L. Chem. J. Chin. Univ. 2021, 42, 3579. (in Chinese) |
[8] | ( 帅蝶, 赵美娟, 陈丙年, 王力, 高等学校化学学报, 2021, 42, 3579.) |
[9] | Pillaiyar, T.; Namasivayam, V.; Manickam, M.; Jung, S. H. J. Med. Chem. 2018, 61, 7395. |
[10] | Lai, X. L.; Wichers, H. J.; Soler, L. M.; Dijkstra, B. W. Angew. Chem., Int. Ed. 2017, 56, 9812. |
[11] | D'Mello, S. A. N.; Finlay, G. J.; Baguley, B. C.; Askarian-Amiri, M. E. Int. J. Mol. Sci. 2016, 17, 1144. |
[12] | Pillaiyar, T.; Manickam, M.; Jung, S. H. Cell. Signalling 2017, 40, 99. |
[13] | Lai, X. L.; Wichers, H. J.; Soler, L. M.; Dijkstra, B. W. Chem. Eur. J. 2018, 24, 47. |
[14] | Kanteev, M.; Goldfeder, M.; Fishman, A. Protein Sci. 2015, 24, 1360. |
[15] | Deri, B.; Kanteev, M.; Goldfeder, M.; Lecina, D.; Guallar, V.; Adir, N.; Fishman, A. Sci. Rep. 2016, 6, 34993. |
[16] | Fan, M.; Zhang, G.; Hu, X.; Xu, X.; Gong, D. Food Res. Int. 2017, 100, 226. |
[17] | Lee, S. Y.; Baek, N.; Nam, T. G. J. Enzyme Inhib. Med. Chem. 2016, 31, 1. |
[18] | Kim, M. S.; Bang, S. H.; Kim, J. H.; Shin, H. J.; Choi, J. H.; Chang, S. E. Ann. Dermatol. 2015, 27, 250. |
[19] | Lin, Z.-Q.; Xia, W.-L.; Liu, R.-Y.; Jiang, S.-H.; Ma, Z.-Q. Chin. J. Org. Chem. 2020, 40, 2980. (in Chinese) |
[19] | ( 林芷晴, 夏婉铃, 刘仁义, 姜少华, 马志强, 有机化学, 2020, 40, 2980.) |
[20] | Chi, G.-X.; Xie, L.-F.; Zhao, M.-J.; Wang, L.; Wang, F.; Li, J.; Zheng, A.-P. Chem. Biol. Drug Des. 2020, 96, 1255. |
[21] | Kim, S. H.; Lee, S. Y.; Hong, C. Y.; Gwak, K. S.; Park, M. J.; Smith, D.; Choi, I. G. Int. J. Cosmet. Sci. 2013, 35, 484. |
[22] | Xiao, L.; Matsubayashi, K.; Miwa, N. Arch. Dermatol. Res. 2007, 299, 245. |
[23] | Chen, L.-Y.; Luque, R.; Li, Y.-W. Chem. Soc. Rev. 2017, 46, 4614. |
[24] | Gumerova, N. I.; Rompel, A. Nat. Rev. Chem. 2018, 2, 0112. |
[25] | Feng, X.-J.; Li, Y.-G.; Zhang, Z.-M.; Wang, E.-B. Acta Chim. Sinica 2013, 71, 1575. (in Chinese) |
[25] | ( 冯小佳, 李阳光, 张志明, 王恩波, 化学学报, 2013, 71, 1575.) |
[26] | Wei, Z.-Y.; Chang, Y.-L.; Yu, H.; Han, S.; Wei, Y.-G. Acta Chim. Sinica 2020, 78, 725. (in Chinese) |
[26] | ( 魏哲宇, 常亚林, 余焓, 韩生, 魏永革, 化学学报, 2020, 78, 725.) |
[27] | Han, Z.-G.; Gao, Y.-Z.; Wang, J.-Y.; Hu, C.-W. Z. Anorg. Allg. Chem. 2009, 635, 2665. |
[28] | Xia, Y.; Wei, Y.-G.; Guo, H.-Y. Acta Chim. Sinica 2005, 63, 1931. (in Chinese) |
[28] | ( 夏芸, 魏永革, 郭洪猷, 化学学报, 2005, 63, 1931.) |
[29] | Jiang, N.; Li, B.; Xu, L.; Wang, Y.-C.; Li, J.-M. Z. Anorg. Allg. Chem. 2014, 640, 2444. |
[30] | Zhao, M.-J.; Chen, X.-S.; Chi, G.-X.; Shuai, D.; Wang, L.; Chen, B.-N.; Li, J. Inorg. Chem. Front. 2020, 7, 4320. |
[31] | Zhao, Z.-F.; Zhou, B.-B.; Zheng, S.-T.; Su, Z.-H.; Wang, C.-M. Inorg. Chim. Acta 2009, 362, 5038. |
[32] | Wang, J.; Tao, Z.; Tian, T.; Qiu, J.; Qian, H.; Zha, Z.; Miao, Z.; Ma, Y.; Wang, H. Chem. Eng. J. 2021, 416, 129137. |
[33] | Xing, R.; Chen, B.-N.; Wang, F.; Zheng, A.-P.; Wang, L. Food Chem. 2015, 188, 177. |
[34] | Breibeck, J.; Gumerova, N. I.; Boesen, B. B.; Galanski, M.; Rompel, A. Sci. Rep. 2019, 9, 5183. |
[35] | Bijelic, A.; Aureliano, M.; Rompel, A. Angew. Chem., Int. Ed. 2019, 58, 2980. |
[36] | Wang, L.; Zhou, B.-B.; Liu, J.-R. Prog. Chem. 2013, 25, 1131. |
[37] | She, S.; Bian, S.; Huo, R.; Chen, K.; Huang, Z.; Zhang, J.; Hao, J.; Wei, Y. Sci. Rep. 2016, 6, 33529. |
[38] | Zhang, J.; Huang, Y.; Li, G.; Wei, Y. Coord. Chem. Rev. 2019, 378, 395. |
[39] | Liu, S.-X.; Wang, C.-L.; Yu, M.; Li, Y.-X.; Wang, E.-B. Acta Chim. Sinica 2005, 63, 1069. (in Chinese) |
[39] | ( 刘术侠, 王春玲, 于淼, 李玉新, 王恩波, 化学学报, 2005, 63, 1069.) |
[40] | Liu, S.-X.; Wang, E.-B.; Zhai, H.-J.; Han, Z.-B.; Zeng, Y.; Li, Z.-L. Acta Chim. Sinica 2004, 62, 170. (in Chinese) |
[40] | ( 刘术侠, 王恩波, 翟宏菊, 韩正波, 曾毅, 李泽琳, 化学学报, 2004, 62, 170.) |
[41] | Hu, J.-J.; Wang, L.; Chen, B.-N.; Chi, G.-X.; Zhao, M.-J.; Li, Y. Eur. J. Inorg. Chem. 2019, 2019, 3270. |
[42] | Li, D.; Gao, X.-Z.; Gu, J.-M.; Tian, Y.; Liu, Y.-Q.; Jin, Z.; Yan, D.-M.; Chen, Y.-G.; Zhu, X. Bioinorg. Chem. Appl. 2016, 2016, 3239494. |
[43] | Ni, D.-L.; Jiang, D.-W.; Kutyreff, C. J.; Lai, J.-H.; Yan, Y.-J.; Barnhart, T. E.; Yu, B.; Im, H. J.; Kang, L.; Cho, S. Y.; Liu, Z.-F.; Huang, P.; Engle, J. W.; Cai, W.-B. Nat. Commun. 2018, 9, 5421. |
[44] | Li, S.-Y.; Jian, D.-W.; Ehlerding, E. B.; Rosenkrans, Z. T.; Engle, J. W.; Wang, Y.; Liu, H.-S.; Ni, D.-L.; Cai, W.-B. ACS Nano 2019, 13, 13382. |
[45] | Geng, J.; Li, M.; Ren, J.-S.; Wang, E.-B.; Qu, X.-G. Angew. Chem., Int. Ed. 2011, 50, 4184. |
[46] | Gao, N.; Sun, H.; Dong, K.; Ren, J.; Duan, T.; Xu, C.; Qu, X. Nat. Commun. 2014, 5, 3422. |
[47] | Li, M.; Xu, C.; Wu, L.; Ren, J.-S.; Wang, E.-B.; Qu, X.-G. Small 2013, 9, 3455. |
[48] | Xing, R.; Zheng, A.-P.; Wang, F.; Wang, L.; Yu, Y.-P.; Jiang, A. H. Food Chem. 2015, 175, 292. |
[49] | Xing, R.; Wang, F.; Dong, L.; Zheng, A.-P.; Wang, L.; Su, W.-J.; Lin, T. Food Chem. 2016, 197, 205. |
[50] | Wang, E.-B.; Hu, C.-W.; Zhou, Y.-X.; Liu, J.-F.; Zhao, S.-L. Acta Chim. Sinica 1990, 48, 790. (in Chinese) |
[50] | ( 王恩波, 胡长文, 周延修, 刘景福, 赵世良, 化学学报, 1990, 48, 790.) |
[51] | Tong, X.; Zhu, W.; Wu, Q.; Qian, X.; Liu, Z.; Yan, W.; Gong, J. J. Alloys Compd. 2011, 509, 7768. |
[52] | Liu, X.; Gong, W.; Luo, J.; Zou, C.; Yang, Y.; Yang, S. Appl. Surf. Sci. 2016, 362, 517. |
[53] | Liu, S.-X.; Wang, C.-M.; Li, D.-H.; Su, Z.-M.; Wang, E.-B.; Hu, N.-H.; Jia, H.-Q. Acta Chim. Sinica 2004, 62, 1305. (in Chinese) |
[53] | ( 刘术侠, 王春梅, 李德慧, 苏忠民, 王恩波, 胡宁海, 贾恒庆, 化学学报, 2004, 62, 1305.) |
[54] | Briand, L. E.; Thomas, H. J.; Baronetti, G. T. Appl. Catal.,A 2000, 201, 191. |
[55] | Qian, X.; Tong, X.; Wu, Q.; He, Z.; Cao, F.; Yan, W. Dalton Trans. 2012, 41, 9897. |
[56] | Luo, K.; Lian, Y.; Zhang, M.; Yu, H.; Wang, G.; Li, J. Chem. Eng. J. 2021, 412, 128659. |
[57] | Uchida, R.; Ishikawa, S.; Tomoda, H. Acta Pharm. Sin. B 2014, 4, 141. |
/
〈 |
|
〉 |