KAg3Ga8S14: An Mid- and Far-infrared Nonlinear Optical Material Exhibiting High Laser-induced Damage Threshold※
Received date: 2021-12-27
Online published: 2022-01-12
Supported by
National Natural Science Foundation of China(22075283); National Natural Science Foundation of China(92161125); Youth Innovation Promotion Association of CAS(2021300)
Nonlinear optical (NLO) crystals can produce tunable lasers due to their second-harmonic generation, sum-frequency generation, difference-frequency generation and optical parametric oscillation. The famous oxide-based NLO materials such as KH2PO4 (KDP), β-BaB2O4 (BBO) and LiB3O5 (LBO) are widely used in ultraviolet-visible (UV-Vis) region. Nevertheless, they are not suitable for the mid- and far-infrared region because of the strong absorption there. Currently, commercially available IR NLO materials are rare, such as chalcogenides AgGaS2 (AGS), AgGaSe2 and phosphorus ZnGeP2, which have the advantages of large NLO coefficient and wide transmission range, but they have drawbacks, like low laser- induced damage threshold (LIDT). Discovering NLO crystals that exhibit simultaneously large NLO and high LIDT is a huge challenge. Here, the introducing electropositive alkali metal ionic K+ in chalcopyrite AGS successfully affords a new sulfide KAg3Ga8S14 by high temperature solid state reaction. Its crystal structure adopts a three-dimensional honeycomb-like open framework, in which all tetrahedral AgS4 and GaS4 units are arranged in a highly oriented manner, thereby producing about a medium phase-matching second harmonic generation (SHG) response of 0.4 times that of the benchmark AGS at the incident laser of 1910 nm. Remarkably, the compound possesses a wide band gap (2.95 eV), thus avoiding two-photon absorption of the incident 1064 nm laser, and exhibits a high LIDT of 4.6 times that of the AGS at the laser of 1064 nm. Moreover, KAg3Ga8S14 has a wide transmission range (0.25—25.0 μm) that covers the two important atmospheric windows of 3—5 and 8—12 μm. Furthermore, according to theoretical calculations, the conductive band is mostly composed of Ga-4s and S-3p states, mixing with small amounts of Ga-4p state, whereas the valence band near the Fermi level originates predominately from Ag-4p and S-3p states, mixing with small amounts of Ga-4p state, indicating that tetrahedral GaS4 and AgS4 units govern the optical and NLO properties of chalcopyrite KAg3Ga8S14.
Jinxu Zhao , Mingshu Zhang , Wenfa Chen , Xiaoming Jiang , Binwen Liu , Guocong Guo . KAg3Ga8S14: An Mid- and Far-infrared Nonlinear Optical Material Exhibiting High Laser-induced Damage Threshold※[J]. Acta Chimica Sinica, 2022 , 80(3) : 259 -264 . DOI: 10.6023/A21120585
[1] | Dong, C. M.; Wang, S. P.; Tao, X. T. J. Synth. Cryst. 2006, 35, 5. (in Chinese) |
[1] | (董春明, 王善朋, 陶绪堂, 人工晶体学报, 2006, 35, 5.) |
[2] | Zhai, Y.; Xu, W.; Meng, X.; Hou, H. Acta Chim. Sinica 2020, 78, 256. (in Chinese) |
[2] | (翟亚丽, 许文娟, 孟祥茹, 侯红卫, 化学学报, 2020, 78, 256.) |
[3] | Jin, F.; Ma, M. Y.; Lv, J. J.; Guo, X. J.; Zha, Q. J.; Sun, L.; Zhang, L.; Liao, R. B. Chin. J. Struct. Chem. 2019, 38, 1099. |
[4] | Jia, N.; Wang, S. P.; Tao, X. T. Acta Phys. Sin. 2018, 67, 12. (in Chinese) |
[4] | (贾宁, 王善朋, 陶绪堂, 物理学报, 2018, 67, 12.) |
[5] | Sun, Y. L.; Wang, X.; Liu, J.; Jiang, X. X.; Sun, J. Sci. Technol. Chem. Ind. 2011, 19, 4. (in Chinese) |
[5] | (孙玉玲, 王新, 刘杰, 蒋新星, 孙瑾, 化工科技, 2011, 19, 4.) |
[6] | Zhou, W.; Zhang, Q.; Yao, W. D.; Xue, H.; Guo, S. P. Inorg. Chem. 2021, 60, 12536. |
[7] | Chen, J. D.; Lin, C. S.; Ye, N. J. Synth. Cryst. 2020, 49, 7. (in Chinese) |
[7] | (陈金东, 林晨升, 叶宁, 人工晶体学报, 2020, 49, 7.) |
[8] | Li, S. F.; Zeng, H. Y.; Jiang, X. M.; Liu, B. W.; Guo, G. C. J. Chin. Rare Earth Soc. 2016, 34, 8. (in Chinese) |
[8] | (李淑芳, 曾卉一, 姜小明, 刘彬文, 郭国聪, 中国稀土学报, 2016, 34, 8.) |
[9] | Chen, C.; Wu, B.; Jiang, A.; You, G. 1985, 28, 235. |
[10] | Chen, C.; Wu, Y.; Jiang, A.; Wu, B.; You, G.; Li, R.; Lin, S. J. Opt. Soc. Am. B 1989, 6, 616. |
[11] | Xu, Q. T.; Guo, S. P. Chin. J. Struct. Chem. 2020, 39, 1564. |
[12] | Zhang, G.; Qin, J.; Liu, T.; Li, Y.; Wu, Y.; Chen, C. Appl. Phys. Lett. 2009, 95, 10. |
[13] | Fan, Y. X.; Eckardt, R. C.; Byer, R. L.; Route, R. K.; Feigelson, R. S. Appl. Phys. Lett. 1984, 45, 313. |
[14] | Eckardt, R. C.; Fan, Y. X.; Byer, R. L.; Marquardt, C. L.; Storm, M. E.; Esterowitz, L. Appl. Phys. Lett. 1986, 49, 608. |
[15] | Vodopyanov, K. L.; Ganikhanov, F.; Maffetone, J. P.; Zwieback, I.; Ruderman, W. Opt. Lett. 2000, 25, 841. |
[16] | Zhuang, L.; Yao, J. Y.; Wu, Y. C. Chin. J. Struct. Chem. 2020, 39, 1559. |
[17] | Chen, C. T. Sci. China 1977, 75. (in Chinese) |
[17] | (陈创天, 中国科学, 1977, 75.) |
[18] | Li, M. Y.; Ma, Z.; Li, B.; Wu, X. T.; Lin, H.; Zhu, Q. L. Chem. Mater. 2020, 32, 4331. |
[19] | Han, S. S.; Yao, W. D.; Yu, S. X.; Sun, Y.; Gong, A.; Guo, S. P. Inorg. Chem. 2021, 60, 3375. |
[20] | Zhang, J. H.; Clark, D. J.; Brant, J. A.; Rosmus, K. A.; Grima, P.; Lekse, J. W.; Jang, J. I.; Aitken, J. A. Chem. Mater. 2020, 32, 8947. |
[21] | Chen, J.; Hu, C. L.; Kong, F.; Mao, J. G. Acc. Chem. Res. 2021, 54, 2775. |
[22] | Wu, K.; Yang, Y.; Gao, L. Coord. Chem. Rev. 2020, 418, 213380. |
[23] | Nian, L.; Huang, J.; Wu, K.; Su, Z.; Yang, Z.; Pan, S. RSC Adv. 2017, 7, 29378. |
[24] | Li, Y. Y.; Wang, W. J.; Wang, H.; Lin, H.; Wu, L. M. Cryst. Growth Des. 2019, 19, 4172. |
[25] | Chu, Y.; Wu, K.; Su, X.; Han, J.; Yang, Z.; Pan, S. Inorg. Chem. 2018, 57, 11310. |
[26] | Lin, H.; Wei, W. B.; Chen, H.; Wu, X. T.; Zhu, Q. L. Coord. Chem. Rev. 2020, 406, 213150. |
[27] | Liu, B. W.; Jiang, X. M.; Zeng, H. Y.; Guo, G. C. J. Am. Chem. Soc. 2020, 142, 10641. |
[28] | Li, R. A.; Zhou, Z.; Lian, Y. K.; Jia, F.; Jiang, X.; Tang, M. C.; Wu, L. M.; Sun, J.; Chen, L. Angew. Chem. Int. Ed. 2020, 59, 11861. |
[29] | Chen, W. F.; Liu, B. W.; Pei, S. M.; Yan, Q. N.; Jiang, X. M.; Guo, G. C. Chem. Mater. 2021, 33, 3729. |
[30] | Huang, X.; Yang, S.-H.; Liu, W.; Guo, S. P. Inorg. Chem. 2021, 10, 16932. |
[31] | Yang, Y.; Wu, K.; Zhang, B.; Wu, X.; Lee, M. H. Chem. Mater. 2020, 32, 1281. |
[32] | Zhang, J. J.; Zhang, Z. H.; Tao, X. T. J. Shandong Univ., Nat. Sci. 2011, 46, 22. (in Chinese) |
[32] | (张俊杰, 张中晗, 陶绪堂, 山东大学学报: 理学版, 2011, 46, 22.) |
[33] | Zhou, M.; Kang, L.; Yao, J.; Lin, Z.; Wu, Y.; Chen, C. Inorg. Chem. 2016, 55, 3724. |
[34] | Li, J. N.; Yao, W. D.; Li, X. H.; Liu, W.; Xue, H. G.; Guo, S. P. Chem. Commun. 2021, 57, 1109. |
[35] | Li, J. N.; Li, X. H.; Yao, W. D.; Liu, W.; Guo, S. P. Chem. Commun. 2021, 57, 5175. |
[36] | Li, Z.; Yang, Y.; Guo, Y.; Xing, W.; Luo, X.; Lin, Z.; Yao, J.; Wu, Y. Chem. Mater. 2019, 31, 1110. |
[37] | Chen, H.; Liu, P. F.; Li, B. X.; Lin, H.; Wu, L. M.; Wu, X. T. Dalton Trans. 2018, 47, 429. |
[38] | Li, Z.; Zhang, S.; Yin, W.; Kang, K.; Guo, Y.; Xing, W.; Lin, Z.; Yao, J.; Wu, Y. J. Mater. Chem. C 2019, 7, 7516. |
[39] | Rigaku Oxford Diffraction, CrysAlisPro Software System, version v40.67a, Rigaku Corporation, Oxford, UK, 2019. |
[40] | Sheldrick, G. M. SHELXTL, Crystallographic Software Package, Version 5.1, Bruker-Axs Madison, WI, 1998. |
[41] | Spek, A. L.; Platon, A. Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2005. |
[42] | Kortüm, G. Reflectance Spectroscopy, Springer, New York, 1969, pp. 1-336. |
[43] | Chen, M. M.; Zhou, S. H.; Wei, W.; Wu, X. T.; Lin, H.; Zhu, Q. L. Inorg. Chem. 2021, 60, 10038. |
[44] | Chu, Y.; Wang, P.; Zeng, H.; Cheng, S.; Su, X.; Yang, Z.; Li, J.; Pan, S. Chem. Mater. 2021, 33, 6514. |
[45] | Lin, H.; Zhou, L. J.; Chen, L. Chem. Mater. 2012, 24, 3406. |
[46] | Zhang, M. J.; Jiang, X. M.; Zhou, L. J.; Guo, G. C. J. Mater. Chem. C 2013, 1, 4754. |
[47] | Kurtz, S. K.; Perry, T. T. J. Appl. Phys. 1968, 39, 3798. |
[48] | Kang, L.; Zhou, M.; Yao, J.; Lin, Z.; Wu, Y.; Chen, C. J. Am. Chem. Soc. 2015, 137, 13049. |
[49] | Payne, M. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045. |
[50] | Clark, S. J.; Segallii, M. D.; Pickardii, C. J.; Hasnipiii, P. J.; Probertiv, M. Z. Kristallogr. - New Cryst. Struct. 2005, 220, 5. |
/
〈 |
|
〉 |