Review

Fabrication Strategies of Conjugated Microporous Polymer Membranes for Molecular Separation

  • Mengxi Zhang ,
  • Xiao Feng
Expand
  • School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2021-11-07

  Online published: 2022-01-14

Supported by

National Natural Science Foundation of China(21922502)

Abstract

Saving the energy consumption of the industrial separation process provides an effective way to alleviate the global energy shortage issue. Compared with traditional separation technology, membrane separation possesses low energy consumption and high economic benefits. The exploration of high-efficiency membrane materials is the key strategy to elevate membrane separation performance. Conjugated microporous polymer (CMP) membranes exhibit merits such as rigid and permanent micropores, high porosity, adjustable pore structure and pore environment, and good structural stability, which play vibrant role in molecular separation. In this review, we summarized the fabrication methods of CMP membranes with their advantages and challenges; introduced the research progress and mechanism in molecular separation field, including gas separation, organic solvent nanofiltration, ion sieving and chiral separation, over the recent years, which may provide ideas for designing new CMP membranes with high performance for crucial separation processes.

Cite this article

Mengxi Zhang , Xiao Feng . Fabrication Strategies of Conjugated Microporous Polymer Membranes for Molecular Separation[J]. Acta Chimica Sinica, 2022 , 80(2) : 168 -179 . DOI: 10.6023/A21110505

References

[1]
Sholl, D. S.; Lively, R. P. Nature 2016, 532, 435.
[2]
(a) Ockwig, N. W.; Nenoff, T. M. Chem. Rev. 2007, 107, 4078.
[2]
(b) Iulianelli, A.; Algieri, C.; Donato, L.; Garofalo, A.; Galiano, F.; Bagnato, G.; Basile, A.; Figoli, A. Int. J. Hydrogen Energy 2017, 42, 22138.
[3]
(a) Koros, W. J.; Mahajan, R. J. Membr. Sci. 2000, 175, 181.
[3]
(b) Ku, A. Y.; Kulkarni, P.; Shisler, R.; Wei, W. J. Membr. Sci. 2011, 367, 233.
[4]
Wang, L.; Boutilier, M. S. H.; Kidambi, P. R.; Jang, D.; Hadjiconstantinou, N. G.; Karnik, R. Nat. Nanotechnol. 2017, 12, 509.
[5]
Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Angew. Chem., Int. Ed. 2017, 56, 9292.
[6]
(a) Greenfield, M. L.; Theodorou, D. N. Macromolecules 1993, 26, 5461.
[6]
(b) Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D. Science 2017, 356, eaab0530.
[6]
(c) Robeson, L. M. J. Membr. Sci. 2008, 320, 390.
[6]
(d) Sanders, D. F.; Smith, Z. P.; Guo, R.; Robeson, L. M.; McGrath, J. E.; Paul, D. R.; Freeman, B. D. Polymer 2013, 54, 4729.
[6]
(e) Robeson, L. M.; Liu, Q.; Freeman, B. D.; Paul, D. R. J. Membr. Sci. 2015, 476, 421.
[7]
(a) Choi, J.; Jeong, H. K.; Snyder, M. A.; Stoeger, J. A.; Masel, R. I.; Tsapatsis, M. Science 2009, 325, 590.
[7]
(b) Lai, Z.; Bonilla, G.; Diaz, I.; Nery, J. G.; Sujaoti, K.; Amat, M. A.; Kokkoli, E.; Terasaki, O.; Thompson, R. W.; Tsapatsis, M.; Vlachos, D. G. Science 2003, 300, 456.
[8]
(a) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.
[8]
(b) Lin, J. Y. S. Science 2016, 353, 121.
[8]
(c) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2334.
[8]
(d) Qiu, S.; Xue, M.; Zhu, G. Chem. Soc. Rev. 2014, 43, 6116.
[8]
(e) Lü, L.; Zhao, Y.; Wei, Y.; Wang, H. Acta Chim. Sinica 2021, 79, 869. (in Chinese)
[8]
( 吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.)
[8]
(f) Li, X.; Yan, B.; Huang, W.; Fu, L.; Sun, X.; Lü, A. Acta Chim. Sinica 2021, 79, 459. (in Chinese)
[8]
( 李旭飞, 闫保有, 黄维秋, 浮历沛, 孙宪航, 吕爱华, 化学学报, 2021, 79, 459.)
[8]
(g) Zhang, H.; Li, G.; Zhang, K.; Liao, C. Acta Chim. Sinica 2017, 75, 841. (in Chinese)
[8]
( 张贺, 李国良, 张可刚, 廖春阳, 化学学报, 2017, 75, 841.)
[9]
(a) Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.
[9]
(b) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Corte?s, J. L.; Co?te?, A. P.; Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Science 2007, 316, 268.
[9]
(c) Li, Y.; Guo, L.; Lü, Y.; Zhao, Z.; Ma, Y.; Chen, W.; Xing, G.; Jiang, D.; Chen, L. Angew. Chem., Int. Ed. 2021, 60, 5363.
[9]
(d) Li, Y.; Chen, Q.; Xu, T.; Xie, Z.; Liu, J.; Yu, X.; Ma, S.; Qin, T.; Chen, L. J. Am. Chem. Soc. 2019, 141, 13822.
[9]
(e) Xie, Z.; Wang, B.; Yang, Z.; Yang, X.; Yu, X.; Xing, G.; Zhang, Y.; Chen, L. Angew. Chem., Int. Ed. 2019, 58, 15742.
[9]
(f) Jiang, C.; Feng, X.; Wang, B. Acta Chim. Sinica 2020, 78, 466. (in Chinese)
[9]
( 蒋成浩, 冯霄, 王博, 化学学报, 2020, 78, 466.)
[10]
(a) Zimmerman, C. M.; Singh, A.; Koros, W. J. J. Membr. Sci. 1997, 137, 145.
[10]
(b) Zhang, Y.; Feng, X.; Yuan, S.; Zhou, J.; Wang, B. Inorg. Chem. Front. 2016, 3, 896.
[10]
(c) Zhu, X.; Hua, Y. Y.; Tian, C. C.; Abney, C. W.; Zhang, P.; Jin, T.; Liu, G. P.; Browning, K. L.; Sacci, R. L.; Veith, G. M.; Zhou, H. C.; Jin, W. Q.; Dai, S. Angew. Chem., Int. Ed. 2018, 57, 2816.
[10]
(d) Biswal, B. P.; Chaudhari, H. D.; Banerjee, R.; Kharul, U. K. Chemistry 2016, 22, 4695.
[10]
(e) Kang, Z.; Peng, Y.; Qian, Y.; Yuan, D.; Addicoat, M. A.; Heine, T.; Hu, Z.; Tee, L.; Guo, Z.; Zhao, D. Chem. Mater. 2016, 28, 1277.
[10]
(f) Liu, G.; Chernikova, V.; Liu, Y.; Zhang, K.; Belmabkhout, Y.; Shekhah, O.; Zhang, C.; Yi, S.; Eddaoudi, M.; Koros, W. J. Nat. Mater. 2018, 17, 283.
[10]
(g) Kitao, T.; Zhang, Y.; Kitagawa, S.; Wang, B.; Uemura, T. Chem. Soc. Rev. 2017, 46, 3108.
[10]
(h) Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabres, I. X. F. X.; Gascon, J. Nat. Mater. 2015, 14, 48.
[10]
(i) Vinh-Thang, H.; Kaliaguine, S. Chem. Rev. 2013, 113, 4980.
[11]
(a) Carreon, M. A.; Li, S.; Falconer, J. L.; Noble, R. D. J. Am. Chem. Soc. 2008, 130, 5412.
[11]
(b) Saufi, S. M.; Ismail, A. F. Carbon 2004, 42, 241.
[11]
(c) Lee, S. Solid State Ionics 2003, 158, 287.
[11]
(d) Wang, H.; Cong, Y.; Yang, W. Catal. Today 2003, 82, 157.
[12]
(a) Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Science 2014, 346, 1356.
[12]
(b) Fu, J.; Das, S.; Xing, G.; Ben, T.; Valtchev, V.; Qiu, S. J. Am. Chem. Soc. 2016, 138, 7673.
[13]
(a) Lee, J. S. M.; Cooper, A. I. Chem. Rev. 2020, 120, 2171.
[13]
(b) Zhang, H.; Zhang, Y.; Gu, C.; Ma, Y. Adv. Energy Mater. 2015, 5, 1402175.
[13]
(c) Liu, Z.; Yin, Y.; Eginligil, M.; Wang, L.; Liu, J.; Huang, W. Polym. Chem. 2021, 12, 807.
[13]
(d) Meng, S.; Zou, X.; Liu, C.; Ma, H.; Zhao, N.; Ren, H.; Jia, M.; Liu, J.; Zhu, G. ChemCatChem 2016, 8, 1.
[13]
(e) Yang, S.-J.; Ding, X.-S.; Han, B.-H. Macromolecules 2018, 51, 947.
[13]
(f) Sun, C.-J.; Zhao, X.-Q.; Wang, P.-F.; Wang, H.; Han, B.-H. Sci. China Chem. 2017, 60, 1067.
[14]
Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem., Int. Ed. 2007, 46, 8574.
[15]
Chen, L.; Honsho, Y.; Seki, S.; Jiang, D. J. Am. Chem. Soc. 2010, 132, 6742.
[16]
Jiang, J.-X.; Trewin, A.; Adams, D. J.; Cooper, A. I. Chem. Sci. 2011, 2, 1777.
[17]
Sun, L.; Liang, Z.; Yu, J.; Xu, R. Polym. Chem. 2013, 4, 1932.
[18]
Yuan, S.; Dorney, B.; White, D.; Kirklin, S.; Zapol, P.; Yu, L.; Liu, D. J. Chem. Commun. 2010, 46, 4547.
[19]
Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D. Angew. Chem., Int. Ed. 2011, 50, 8753.
[20]
Xu, C.; Hedin, N. J. Mater. Chem. A 2013, 1, 3406.
[21]
Zhu, X.; Tian, C.; Jin, T.; Wang, J.; Mahurin, S. M.; Mei, W.; Xiong, Y.; Hu, J.; Feng, X.; Liu, H.; Dai, S. Chem. Commun. 2014, 50, 15055.
[22]
Lu, G.; Yang, H.; Zhu, Y.; Huggins, T.; Ren, Z. J.; Liu, Z.; Zhang, W. J. Mater. Chem. A 2015, 3, 4954.
[23]
Zhang, Y.; A, S.; Zou, Y.; Luo, X.; Li, Z.; Xia, H.; Liu, X.; Mu, Y. J. Mater. Chem. A 2014, 2, 13422.
[24]
Liao, Y.; Wang, H.; Zhu, M.; Thomas, A. Adv. Mater. 2018, 30, 1705710.
[25]
Gu, C.; Chen, Y.; Zhang, Z.; Xue, S.; Sun, S.; Zhang, K.; Zhong, C.; Zhang, H.; Pan, Y.; Lü, Y.; Yang, Y.; Li, F.; Zhang, S.; Huang, F.; Ma, Y. Adv. Mater. 2013, 25, 3443.
[26]
Germain, J.; Frechet, J. M.; Svec, F. Chem. Commun. 2009, 1526.
[27]
Weber, J.; Thomas, A. J. Am. Chem. Soc. 2008, 130, 6334.
[28]
(a) Bhunia, A.; Vasylyeva, V.; Janiak, C. Chem. Commun. 2013, 49, 3961.
[28]
(b) Liu, X.; Li, H.; Zhang, Y.; Xu, B.; A, S.; Xia, H.; Mu, Y. Polym. Chem. 2013, 4, 2445.
[29]
(a) Zhang, W.; Li, C.; Yuan, Y.-P.; Qiu, L.-G.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. J. Mater. Chem. 2010, 20, 6413.
[29]
(b) Zhang, W.; Liang, F.; Li, C.; Qiu, L. G.; Yuan, Y. P.; Peng, F. M.; Jiang, X.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. J. Hazard. Mater. 2011, 186, 984.
[30]
(a) Zhang, P.; Weng, Z.; Guo, J.; Wang, C. Chem. Mater. 2011, 23, 5243.
[30]
(b) Muenmart, D.; Foster, A. B.; Harvey, A.; Chen, M.-T.; Navarro, O.; Promarak, V.; McCairn, M. C.; Behrendt, J. M.; Turner, M. L. Macromolecules 2014, 47, 6531.
[31]
Cheng, G.; Hasell, T.; Trewin, A.; Adams, D. J.; Cooper, A. I. Angew. Chem., Int. Ed. 2012, 51, 12727.
[32]
Lindemann, P.; Tsotsalas, M.; Shishatskiy, S.; Abetz, V.; Krolla- Sidenstein, P.; Azucena, C.; Monnereau, L.; Beyer, A.; Gölzhäuser, A.; Mugnaini, V.; Gliemann, H.; Bräse, S.; Wöll, C. Chem. Mater. 2014, 26, 7189.
[33]
(a) Liang, B.; Wang, H.; Shi, X.; Shen, B.; He, X.; Ghazi, Z. A.; Khan, N. A.; Sin, H.; Khattak, A. M.; Li, L.; Tang, Z. Nat. Chem. 2018, 10, 961.
[33]
(b) Lindemann, P.; Schade, A.; Monnereau, L.; Feng, W.; Batra, K.; Gliemann, H.; Levkin, P.; Bräse, S.; Wöll, C.; Tsotsalas, M. J. Mater. Chem. A 2016, 4, 6815.
[33]
(c) Senkovskyy, V.; Senkovska, I.; Kiriy, A. ACS Macro Lett. 2012, 1, 494.
[33]
(d) Becker, D.; Heidary, N.; Horch, M.; Gernert, U.; Zebger, I.; Schmidt, J.; Fischer, A.; Thomas, A. Chem. Commun. 2015, 51, 4283.
[34]
(a) Chen, Z.; Chen, M.; Yu, Y.; Wu, L. Chem. Commun. 2017, 53, 1989.
[34]
(b) Shao, P.; Yao, R.; Li, G.; Zhang, M.; Yuan, S.; Wang, X.; Zhu, Y.; Zhang, X.; Zhang, L.; Feng, X.; Wang, B. Angew. Chem., Int. Ed. 2020, 59, 4401.
[35]
(a) Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y.; Jiang, D. Angew. Chem., Int. Ed. 2014, 53, 4850.
[35]
(b) Gu, C.; Huang, N.; Chen, Y.; Qin, L.; Xu, H.; Zhang, S.; Li, F.; Ma, Y.; Jiang, D. Angew. Chem., Int. Ed. 2015, 54, 13594.
[36]
(a) Wang, L.; Zeng, C.; Xu, H.; Yin, P.; Chen, D.; Deng, J.; Li, M.; Zheng, N.; Gu, C.; Ma, Y. Chem. Sci. 2019, 10, 1023.
[36]
(b) Tang, X.; Ma, N.; Xu, H.; Zhang, H.; Zhang, Q.; Cai, L.; Otake, K.; Yin, P.; Kitagawa, S.; Horike, S.; Gu, C. Mater. Horiz. 2021, 8, 3088.
[36]
(c) Wang, L.; Jiang, Q.; Zhao, D.; Zhang, Q.; Jia, Y.; Gu, C.; Hu, D.; Ma, Y. CCS Chem. 2021, 3, 2688.
[37]
(a) Zhang, M.; Jing, X.; Zhao, S.; Shao, P.; Zhang, Y.; Yuan, S.; Li, Y.; Gu, C.; Wang, X.; Ye, Y.; Feng, X.; Wang, B. Angew. Chem., Int. Ed. 2019, 58, 8768.
[37]
(b) Zhang, M.; Yu, A.; Wu, X.; Shao, P.; Huang, X.; Ma, D.; Han, X.; Xie, J.; Feng, X.; Wang, B. Nano Res. 2021, DOI: 10.1007/s12274-021-3750-z.
[37]
(c) Jimenez-Solomon, M. F.; Song, Q.; Jelfs, K. E.; Munoz-Ibanez, M.; Livingston, A. G. Nat. Mater. 2016, 15, 760.
[37]
(d) Shan, M.; Liu, X.; Wang, X.; Yarulina, I.; Seoane, B.; Kapteijn, F.; Gascon, J. Sci. Adv. 2018, 4, 1698.
[38]
(a) Zhou, Z.; Guo, D.; Shinde, D. B.; Cao, L.; Li, Z.; Li, X.; Lu, D.; Lai, Z. ACS Nano 2021, 15, 11970.
[38]
(b) Zhou, Z.; Shinde, D. B.; Guo, D.; Cao, L.; Nuaimi, R. A.; Zhang, Y.; Enakonda, L. R.; Lai, Z. Adv. Funct. Mater. 2021, 2108672.
[39]
(a) He, X.; Sin, H.; Liang, B.; Ghazi, Z. A.; Khattak, A. M.; Khan, N. A.; Alanagh, H. R.; Li, L.; Lu, X.; Tang, Z. Adv. Funct. Mater. 2019, 29, 1900134.
[39]
(b) Tiwari, K.; Sarkar, P.; Modak, S.; Singh, H.; Pramanik, S. K.; Karan, S.; Das, A. Adv. Mater. 2020, 32, 1905621.
[39]
(c) Li, K.; Zhu, J.; Liu, D.; Zhang, Y.; Van der Bruggen, B. Chem. Mater. 2021, 33, 7047.
[39]
(d) Zhou, Z.; Li, X.; Guo, D.; Shinde, D. B.; Lu, D.; Chen, L.; Liu, X.; Cao, L.; Aboalsaud, A. M.; Hu, Y.; Lai, Z. Nat. Commun. 2020, 11, 5323.
[40]
(a) Gu, C.; Huang, N.; Wu, Y.; Xu, H.; Jiang, D. Angew. Chem., Int. Ed. 2015, 54, 11540.
[40]
(b) Lindemann, P.; Schade, A.; Monnereau, L.; Feng, W.; Batra, K.; Gliemann, H.; Levkin, P.; Brase, S.; Woll, C.; Tsotsalas, M. J. Mater. Chem. A 2016, 4, 6815.
[41]
(a) Yang, S.; Yang, C.; Zhang, X.; Zheng, Z.; Bi, S.; Zhang, Y.; Zhou, H. J. Mater. Chem. C 2018, 6, 9044.
[41]
(b) Bai, S.; Hu, Q.; Zeng, Q.; Wang, M.; Wang, L. ACS Appl. Mater. Inter. 2018, 10, 11319.
[42]
Zhang, Q.; Dong, H.; Hu, W. J. Mater. Chem. C 2018, 6, 10672.
[43]
Liu, J.; Wei, W.; Jiang, J. ACS Sustainable Chem. Eng. 2020, 8, 2892.
[44]
Mulunda, M. M.; Zhang, Z.; Nies, E.; van Goethem, C.; Vankelecom, I. F. J.; Koeckelberghs, G. Macromol. Chem. Phys. 2018, 219, 1800024.
[45]
Huang, Y.; Zang, Y.; Xu, L.; Lei, T.; Cui, J.; Xie, Y.; Wang, J.; Jia, H.; Miao, F. Sep. Purif. Technol. 2021, 266, 118529.
[46]
(a) Chuah, C. Y.; Goh, K.; Yang, Y.; Gong, H.; Li, W.; Karahan, H. E.; Guiver, M. D.; Wang, R.; Bae, T. H. Chem. Rev. 2018, 118, 8655.
[46]
(b) Samarasinghe, S.; Chuah, C. Y.; Karahan, H. E.; Sethunga, G.; Bae, T. H. Membranes 2020, 10, 75.
[47]
(a) Marchetti, P.; Jimenez Solomon, M. F.; Szekely, G.; Livingston, A. G. Chem. Rev. 2014, 114, 10735.
[47]
(b) Szekely, G.; Jimenez-Solomon, M. F.; Marchetti, P.; Kim, J. F.; Livingston, A. G. Green Chem. 2014, 16, 4440.
[47]
(c) Liang, B.; He, X.; Hou, J.; Li, L.; Tang, Z. Adv. Mater. 2019, 31, e1806090.
[48]
(a) Mi, B. Science 2014, 343, 740.
[48]
(b) Liu, P.; Hou, J.; Zhang, Y.; Li, L.; Lu, X.; Tang, Z. Inorg. Chem. Front. 2020, 7, 2560.
[49]
(a) Shen, J.; Okamoto, Y. Chem. Rev. 2016, 116, 1094.
[49]
(b) Navarro- Sanchez, J.; Argente-Garcia, A. I.; Moliner-Martinez, Y.; Roca- Sanjuan, D.; Antypov, D.; Campins-Falco, P.; Rosseinsky, M. J.; Marti-Gastaldo, C. J. Am. Chem. Soc. 2017, 139, 4294.
[49]
(c) Sun, Z.; Hou, J.; Li, L.; Tang, Z. Coordin. Chem. Rev. 2020, 425, 213481.
Outlines

/