Dual-Decoration and Mechanism Analysis of Ni-rich LiNi0.83Co0.11Mn0.06O2 Cathodes by Na2PO3F
Received date: 2021-10-26
Online published: 2022-01-18
Supported by
National Natural Science Foundation of China(2217090605); National Natural Science Foundation of China(21875022); National Natural Science Foundation of China(51802020); Natural Science Foundation of Chongqing, China(cstc2020jcyj-msxmX0654); Natural Science Foundation of Chongqing, China(cstc2020jcyj-msxmX0589); Young Elite Scientists Sponsorship Program by China Association for Science and Technology, China(2018QNRC001); L. Chen acknowledges the support from Beijing Institute of Technology Research Fund Program for Young Scholars
Since the commercialization of lithium-ion battery in 1991, it has promoted human society development for nearly three decades. Due to its higher energy density, Ni-rich layered oxides currently stand out as the most promising cathode materials to build power batteries for portable electronic devices and new energy electric vehicles. However, the severe side effects on the electrode/electrolyte interface and the structural instability of the material hinder its development, and a lot of research focus on improving the cycling stability and rate capability of nickel-rich cathode material. Here, a facile treatment with Na2PO3F was carried out to modify the Ni-rich LiNi0.83Co0.11Mn0.06O2 material at surface and bulk regions by using wet methods. By virtue of the fact that Na2PO3F dissolves in water and releases fluorine ions, a F– doped and LiF coated Ni-rich LiNi0.83Co0.11Mn0.06O2 material was obtained. The X-ray diffraction (XRD) results showed that (003) peak shifted to a higher angle due to the replacement of O2– by smaller F–. Besides, the XRD Rietveld refinement and X-ray photoelectron spectroscopy (XPS) sputtering data determined that part of F– ions had been successfully doped into the lattice, and the basic layer structure of the material was still well preserved in the process of modification. Scanning electron microscope (SEM), energy disperse spectroscopy (EDS), and transmission electron microscope (TEM) combined with XPS proved the existence of surface LiF coating layer. The 2~10 nm LiF layer was uniformly covered onto the surface of the cathode material, acting as a physical barrier against direct corrosion from the electrolyte, thus enhancing the cycling stability. In addition, the lithium ion diffusion coefficients (DLi+) for bare and modified samples were calculated from cyclic voltammetry test results, which reveals a better rate capability from the synergistic effect of surface LiF coating and lattice F– doping. The electrochemical tests also showed a better cycling stability and enhanced rate capability of the modified samples: within 2.75~4.3 V, the capacity retention after 200 cycles at 1 C-rate had been elevated from 32.2% to 65.2%; the discharge capacity under 10 C-rate was also improved from 145.7 to 161.5 mAh/g. To elaborate the improved effect, post-cycling characterizations were conducted. The morphology of modified particles after 200 cycles at 1 C still maintained intact grains, in contrast with the bare samples, exhibiting many micro-cracks. XPS spectra on decorated cathodes after cycling showed weaker signals of by-products including LiF, LixPOyFz, NiF2 in the CEI layer, indicating side reaction on the interface was effectively suppressed, thus contributing to enhancing the cycling stability. The applicable method herein demonstrates a promising solution for improvement of Ni-rich cathode materials and their coming commercial application.
Qing Huang , Rui Ding , Lai Chen , Yun Lu , Qi Shi , Qiyu Zhang , Qijun Nie , Yuefeng Su , Feng Wu . Dual-Decoration and Mechanism Analysis of Ni-rich LiNi0.83Co0.11Mn0.06O2 Cathodes by Na2PO3F[J]. Acta Chimica Sinica, 2022 , 80(2) : 150 -158 . DOI: 10.6023/A21100477
| [1] | Liu, J.-D.; Zhang, Y.-D.; Liu, J.-X.; Li, J.-H.; Qiu, X.-G.; Cheng, F.-Y. Acta Chim. Sinica 2020, 78, 1426. (in Chinese) |
| [1] | ( 刘九鼎, 张宇栋, 刘俊祥, 李金翰, 邱晓光, 程方益, 化学学报, 2020, 78, 1426.) |
| [2] | Liu, J.; Zou, Z.-G.; Zhang, S.-C.; Zhang, H.-H. J. Solid State Electrochem. 2020, 25, 387. |
| [3] | Su, Y.-F.; Zhang, Q.-Y.; Chen, L.; Bao, L.; Lu, Y.; Chen, S.; Wu, F. J. Energy Chem. 2022, 65, 236. |
| [4] | Manthiram, A.; Song, B.; Li, W.-D. Energy Storage Mater. 2017, 6, 125. |
| [5] | Li, T.-X.; Li, D.-L.; Zhang, Q.-B.; Gao, J.-H.; Kong, X.-Z.; Fan, X.-Y.; Gou, L. Acta Chim. Sinica 2021, 79, 678. (in Chinese) |
| [5] | ( 李童心, 李东林, 张清波, 高建行, 孔祥泽, 樊小勇, 苟蕾, 化学学报, 2021, 79, 678.) |
| [6] | Su, Y.-F.; Li, L.-W.; Chen, G.; Chen, L.; Li, N.; Lu, Y.; Bao, L.-Y.; Chen, S.; Wu, F. Chin. J. Chem. 2020, 39, 189. |
| [7] | Kim, J.; Lee, H.-Y.; Cha, H.-Y.; Yoon, M.-S.; Park, M.; Cho, J. Adv. Energy Mater. 2018, 8, 1702028. |
| [8] | Nam, G.-W.; Park, N.-Y.; Park, K.-J.; Yang, J.; Liu, J.; Yoon, C.-S.; Sun, Y.-K. ACS Energy Letters 2019, 4, 2995. |
| [9] | Li, J.; Zhang, M.-L.; Zhang, D.-Y.; Yan, Y.-X.; Li, Z.-M. Chem. Eng. J. 2020, 402, 14. |
| [10] | Qiu, K.; Yan, M.-X.; Zhao, S.-W.; An, S.-L.; Wang, W.; Jia, G.-X., Acta Chim. Sinica 2021, 79, 1146. (in Chinese) |
| [10] | ( 邱凯, 严铭霞, 赵守旺, 安胜利, 王玮, 贾桂霄, 化学学报, 2021, 79, 1146.) |
| [11] | Xu, H.; Ai, L.; Yan, J.-Y.; Yan, G.-L.; Zhang, W.-T. Ceram. Int. 2019, 45, 23089. |
| [12] | Seo, J.-H.; Kim, U.-H.; Sun, Y.-K.; Yoon, C.-S. J. Electrochem. Soc. 2020, 167, 100557. |
| [13] | Jia, G.-F.; Shangguan, X.-G.; Liu, S.-Q.; He, Z. Ionics 2020, 26, 4969. |
| [14] | Yang, R.-K.; Wu, Z.-G.; Li, Y.-C.; Li, R.; Qiu, L.; Wang, D.; Yang, L.; Guo, X.-D. Ionics 2020, 26, 3223. |
| [15] | Li, L.-J.; Xia, L.-F.; Yang, H.-P.; Zhan, X.-H.; Chen, J.; Chen, Z.-Y.; Duan, J.-F. J. Alloys Compd. 2020, 832, 154959. |
| [16] | Li, L.; Liu, Q.; Huang, J.-J.; Luo, S.-Y.; Sun, H.; Zheng, H.; Feng, C.-Q. J. Mater. Sci.: Mater. Electron. 2020, 31, 12409. |
| [17] | Jamil, S.; Yu, R.-Z.; Wang, Q.; Fasehullah, M.; Huang, Y.; Yang, Z.-H.; Yang, X.-K.; Wang, X.-Y. J. Power Sources 2020, 473, 228597. |
| [18] | He, Y.-L.; Li, Y.; Liu, Y.; Li, W.-X.; Liu, W.-B. Mater. Chem. Phys. 2020, 251, 123085. |
| [19] | Zhang, D.-K.; Liu, Y.; Wu, L.; Feng, L.-W.; Jin, S.-L.; Zhang, R.; Jin, M.-L. Electrochim. Acta 2019, 328, 135086. |
| [20] | Liu, Z.-B.; Li, J.-G.; Zhu, M.-J.; Wang, L.; Kang, Y.-Q.; Dang, Z.-H.; Yan, J.-S.; He, X.-M. Materials 2021, 14, 1816. |
| [21] | Wang, R.; Zhang, T.-S.; Zhang, Q.-R.; Zheng, M.-W.; Xu, K.; Yan, W.-T. Ionics 2019, 26, 1165. |
| [22] | Kong, F.; Liang, C.; Longo, R.-C.; Yeon, D.-H.; Zheng, Y.; Park, J.-H.; Doo, S.-G.; Cho, K. Chem. Mater. 2016, 28, 6942. |
| [23] | Vanaphuti, P.; Bai, J.-M.; Ma, L.; Ehrlich, S.; Kisslinger, K.; Wang, F.; Wang, Y. Energy Storage Mater. 2020, 31, 459. |
| [24] | Kim, H.; Kim, S.-B.; Park, D.-H.; Park, K.-W. Energies 2020, 13. |
| [25] | Qiu, Q.-Q.; Yuan, S.-S.; Bao, J.; Wang, Q.-C.; Yue, X.-Y.; Li, X.-L.; Wu, X.-J.; Zhou, Y.-N. J. Energy Chem. 2021, 61, 574. |
| [26] | Wu, F.; Dong, J.-Y.; Chen, L.; Bao, L.-Y.; Li, N.; Cao, D.-Y.; Lu, Y.; Xue, R.-X.; Liu, N.; Wei, L.; Wang, Z.-R.; Chen, S.; Su, Y.-F. Energy Storage Mater. 2021, 41, 495. |
| [27] | Chen, S.; Wang, Z.-R.; Chen, L.; Liu, N.; Li, N.; Lu, Y.; Cao, D.-Y.; Fu, N.-T.; Li, Q.; Su, Y.-F.; Wu, F. ChemElectroChem 2021 8, 4207. |
| [28] | Hofmann, M.; Nagler, F.; Kapuschinski, M.; Guntow, U.; Giffin, G.-A. ChemSusChem 2020, 13, 5962. |
| [29] | Negi, R.-S.; Culver, S.-P.; Mazilkin, A.; Brezesinski, T.; Elm, M.-T. ACS Appl Mater Interfaces 2020, 12, 31392. |
| [30] | Zha, G.-J.; Luo, Y.-P; Hu, N.-G.; Ouyang, C.-Y.; Hou, H.-Q. ACS Appl. Mater. Interfaces 2020, 12, 36046. |
| [31] | Li, W.; Li, Y.-J.; Yang, L.-S.; Chen, Y.-X.; Guo, J.; Zhu, J.; Cao, G.-L. Ionics 2020, 26, 5393. |
| [32] | Li, W.; Yang, L.-S.; Li, Y.-J.; Chen, Y.-X.; Guo, J.; Zhu, J.; Pan, H.; Xi, X.-M. Front. Chem. 2020, 8, 597. |
| [33] | Su, Y.-F.; Zhang, Q.-Y.; Chen, L.; Bao, L.-Y.; Lu, Y.; Chen, S.; Wu, F. Acta Phys.-Chim. Sin. 2021, 37, 110. (in Chinese) |
| [33] | ( 苏岳锋, 张其雨, 陈来, 包丽颖, 卢赟, 陈实, 吴锋, 物理化学学报, 2021, 37, 110.) |
| [34] | Chang, B.; Kim, J.; Cho, Y.; Hwang, I.; Jung, M.-S.; Char, K.; Lee, K.-T.; Kim, K.-J.; Choi, J.-W. Adv. Energy Mater. 2020, 10, 2001069. |
| [35] | Kang, K.-S.; Seong, M.-J.; Oh, S.-H.; Yu, J.-S.; Yim, T. Bull. Korean Chem. Soc. 2020, 41, 1107. |
| [36] | Ma, Y.; Xu, M.; Zhang, J.-B.; Liu, R.; Wang, Y.-M.; Xiao, H.-H.; Huang, Y.-Y.; Yuan, G.-H. J. Alloys Compd 2020, 848, 156387. |
| [37] | Chen, S.; He, T.; Su, Y.-F.; Lu, Y.; Bao, L.-Y.; Chen, L.; Zhang, Q.-Y.; Wang, J.; Chen, R.-J.; Wu, F. ACS Appl. Mater. Interfaces 2017, 9, 29732. |
| [38] | Pedaballi, S.; Li, C.-C. J. Power Sources 2020, 472, 228552 |
| [39] | Huang, X.; Zhu, W.-C.; Yao, J.-Y.; Bu, L.-M.; Li, X.-Y.; Tian, K.; Lu, H.; Quan, C.-Q.; Xu, S.-G.; Xu, K.-H.; Jiang, Z.-K.; Zhang, X.; Gao, L.-J.; Zhao, J.-Q. J. Mater. Chem. A 2020, 8, 174291. |
| [40] | Zhang, X.-H.; Ma, F.; Wei, G.-Y.; Lei, Z.; Qu, J.-K. J. Solid State Electrochem. 2020, 24, 2301 |
| [41] | Breddemann, U.; Sicklinger, J.; Schipper, F.; Davis, V.; Fischer, A.; Huber, K.; Erickson, E. M.; Daub, M.; Hoffmann, A.; Erk, C.; Markovsky, B.; Aurbach, D.; Gasteiger, H.-A.; Krossing, I. Batteries Supercaps 2020, 4, 632. |
| [42] | Liu, K.; Zhang, Q.-Q.; Dai, S.; Li, W.; Liu, X.-J.; Ding, F.; Zhang, J.-L. ACS Appl. Mater. Interfaces 2018, 10, 34153. |
| [43] | Dong, H.-D.; Tang, C.-Q.; Xu, G.; Liang, H.-Y.; Gao, W.-J. Toothpaste Industry 2015, 25, 30. (in Chinese) |
| [43] | ( 董海德, 唐传勤, 徐钢, 梁红艳, 高万杰, 口腔护理用品工业, 2015, 25, 30.) |
| [44] | Zuo, J.-D.; Zhao, Y.; Dong, B.-Q.; Chen, Y.-L. Proceedings of 2014 National Symposium on Polymer Materials Science and Engineering, 2014, pp. 374-377. (in Chinese) |
| [44] | ( 左建东, 赵源, 董必钦, 陈义亮, 2014年全国高分子材料科学与工程研讨会学术论文集, 2014, pp. 374-377.) |
| [45] | Li, X.; Xie, Z.-W.; Liu, W.-J.; Ge, W.-J.; Wang, H.; Qu, M.-Z. Electrochim. Acta 2015, 174, 1122. |
| [46] | Xue, W.; Huang, M.; Li, Y.; Zhu, Y. G.; Gao, R.; Xiao, X.; Zhang, W.; Li, S.; Xu, G.; Yu, Y.; Li, P.; Lopez, J.; Yu, D.; Dong, Y.; Fan, W.; Shi, Z.; Xiong, R.; Sun, C.-J.; Hwang, I.; Lee, W.-K.; Shao-Horn, Y.; Johnson, J. A.; Li, J. Nature Energy 2021, 6, 495. |
| [47] | Yang, W.; Xiang, W.; Chen, Y.-X.; Wu, Z.-G.; Hua, W.-B.; Qiu, L.; He, F.-R.; Zhang, J.; Zhong, B.-H.; Guo, X.-D. ACS Appl. Mater. Interfaces 2020, 12, 10240. |
| [48] | Hu, D.-Z.; Su, Y.-F.; Chen, L.; Li, N.; Bao, L.-Y.; Lu, Y.; Zhang, Q.-Y.; Wang, J.; Chen, S.; Wu, F. J. Energy Chem. 2021, 58, 1. |
| [49] | Xiong, X.-H.; Ding, D.; Bu, Y.-F.; Wang, Z.-X.; Huang, B.; Guo, H.-J.; Li, X.-H. J. Mater. Chem. A 2014, 2, 11691. |
| [50] | Wu, F.; Liu, N.; Chen, L.; Su, Y.-F.; Tan, G.-Q.; Bao, L.-Y.; Zhang, Q.-Y.; Lu, Y.; Wang, J.; Chen, S.; Tan, J. Nano Energy 2019, 59, 50. |
| [51] | Wu, F.; Liu, N.; Chen, L.; Li, N.; Dong, J.-Y.; Lu, Y.; Tan, G.-Q.; Xu, M.-Z.; Cao, D.-Y.; Liu, Y.-F.; Chen, Y.-B.; Su, Y.-F. J. Energy Chem. 2021, 62, 351. |
| [52] | Wu, F.; Liu, N.; Chen, L.; Li, N.; Lu, Y.; Cao, D.-Y.; Xu, M.-Z.; Wang, Z.-R.; Su, Y.-F. ACS Appl. Mater. Interfaces 2021, 13, 24925. |
| [53] | Wu, F.; Dong, J.-Y.; Chen, L.; Bao, L.-Y.; Li, N.; Cao, D.-Y.; Lu, Y.; Xue, R.-X.; Liu, N.; Wei, L.; Wang, Z.-R.; Chen, S.; Su, Y.-F. Energy Storage Mater. 2021, 62, 351. |
/
| 〈 |
|
〉 |