Article

Synthesis and Performance Evaluation of Polyhydroxy Benzene Sulfonate Oil Displacement Agent Based on Enhanced Interfacial Wettability Control

  • Lin Li ,
  • Zizhao Wang ,
  • Jiawei Liu ,
  • Jia Chen ,
  • Xiao Jin ,
  • Caili Dai
Expand
  • aSchool of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
    bKey Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China

Received date: 2021-08-31

  Online published: 2021-12-13

Supported by

National Key R&D Program of China(2019YFA0708700); National Natural Science Foundation of China(52174054); Shandong Provincial Natural Science Foundation(ZR2019BEE046)

Abstract

Controlling the wettability of the oil-rock interface is an important way for highly efficient oilfield development. For existing anionic surfactants, their capability of changing the wettability of the rock surface is limited. Therefore, developing novel oil displacement agent with enhanced interfacial wettability control capability is of great significance. In this work, an interfacial wettability controlling oil displacement agent, sodium dimethyloldodecyl benzene sulfonate (SDDBS), was synthesized and the structure was characterized by Fourier transform infrared (FT-IR) and 1H-nuclear magnetic resonance (1H NMR). The critical micelle concentration (cmc) of SDDBS was measured by spinning drop method and was determined as 0.02% (w). The adsorption behavior of SDDBS on oil-wet rock surface, the interfacial tension reduction property, wettability controlling property, oil film peeling performance and the oil displacement performance were evaluated. Based on the atomic force microscopy (AFM) images, SDDBS could adsorb uniformly on the surface of oil-wet rocks. The oil/water interfacial tension could be reduced to 2.54 mN/m under cmc. After immersing the oil-wet glass sheet in 0.02% (w) SDDBS solution for 48 h, the contact angle of the glass sheet towards water drop in air reduced from 100.2° to 24.5°, while the contact angle towards oil drop underwater increased from 19.2° to 153.9°, proving that SDDBS could regulate the wettability of the oil-wet/hydrophobic rock surface to strong hydrophilic/underwater oleophobic state. The oil film peeling performance of SDDBS was evaluated by calculating the remaining oil film area by graphical analysis software. When soaked in 0.02% (w) SDDBS solution at 60 ℃, the area of oil film could be reduced by 89% within 24 h. The oil film reduction rate could still reach 81% in simulated formation water, indicating good reservoir adaptability. Laboratory simulation core displacement experiments were conducted at 60 ℃ and the results showed that the oil recovery rate was increased by 10.53%. In this work, a novel polyhydroxy benzene sulfonate surfactant was synthesized by one-step method. By introducing hydrogen bond to enhance the interfacial wetting control ability of surfactant, the oil film could be peeled off efficiently, exhibiting strong practical application potential.

Cite this article

Lin Li , Zizhao Wang , Jiawei Liu , Jia Chen , Xiao Jin , Caili Dai . Synthesis and Performance Evaluation of Polyhydroxy Benzene Sulfonate Oil Displacement Agent Based on Enhanced Interfacial Wettability Control[J]. Acta Chimica Sinica, 2022 , 80(1) : 63 -68 . DOI: 10.6023/A21080413

References

[1]
Zhao, F.-L. The Principle of EOR, Petroleum Industry Press, Beijing, 2001, Chapter 6 ; (in Chinese)
[1]
( 赵福麟, EOR原理, 石油工业出版社, 北京. 2001, 第6章.)
[2]
Sun, L.; Tian, Y.-Y. Oilfield Chem. 2013, 30, 216 ; (in Chinese)
[2]
( 孙琳, 田园媛, 油田化学 2013, 30, 216.)
[3]
Guo, H.-J. Pet. Geol. Eng. 2012, 26, 105 ; (in Chinese)
[3]
( 郭洪军, 石油地质与工程, 2012, 26, 105.)
[4]
Li, L; Chen, J.; Jin, X.; Wang, Z.-Z.; Wu, Y.-N.; Dai, C.-L. J. Mol. Liq. 2021, 116973.
[5]
Shen, P.-P. Reservoir Physics Experiment Technology, Petroleum Industry Press, Beijing, 1995, Chapter 2-5 ; (in Chinese)
[5]
( 沈平平, 油层物理实验技术, 石油工业出版社, 北京, 1995, 第2-5章.)
[6]
Xu, B. M.S. Thesis, Northeast Petroleum University, Daqing, 2019 ; (in Chinese)
[6]
( 徐冰, 硕士论文, 东北石油大学, 大庆, 2019.)
[7]
Jian, G.; Puerto, M.; Wehowsky, A. J. Colloid Interface Sci. 2018, 513, 684.
[8]
Ash, P. A.; Bain, C. D. Curr. Opin. Colloid Interface Sci. 2012, 17, 4.
[9]
Yao, Y.; Wei, M. Z. Adv. Colloid Interface Sci. 2021, 294, 102477.
[10]
Hu, X.-Q. M.S. Thesis, Northwestern University, Xi'an, 2014 ; (in Chinese)
[10]
( 胡秀强, 硕士论文, 西北大学, 西安, 2014.)
[11]
Dabiri, A.; Honarvar, B. J. Surfactants Deterg. 2020, 23, 4.
[12]
Zhang, X. Q. M.S. Thesis, Ocean University of China, Qingdao, 2013 ; (in Chinese)
[12]
( 张小琴, 硕士论文, 中国海洋大学, 青岛, 2013.)
[13]
Wu, X.-J.; Zhao, L.; Wang, X.-J. J. Dispersion Sci. Technol. 2013, 34, 110.
[14]
Massarweh, O.; Abushaikha, A. S. Energy Rep. 2020, 6, 3150.
[15]
Fuangswasdi, A.; Charoensaeng, A.; Sabatini, D. A. J. Surfactants Deterg. 2006, 9, 21.
[16]
Sun, L. H.; Liu, W. D.; Sun, C. L. Adv. Mater. Res. 2011, 233, 2051.
[17]
Ebrahim, A. S.; Garrouch, A. A.; Lababidi, H. J. Pet. Sci. Eng. 2016, 138, 234.
[18]
Paria, S.; Khilar, K. C. Adv. Colloid Interface Sci. 2004, 110, 75.
[19]
Salager, J. L.; Forgiarini, A. M. J. Surfactants Deterg. 2017, 16, 449.
[20]
Yamaguchi, M.; Tamura, S.; Sakata, T. Sens. Mater. 2018, 30, 1307.
[21]
Jian, G.; Puerto, M.; Wehowsky, A. J. Colloid Interface Sci. 2018, 513, 684.
[22]
Zana, R. J. Colloid Interface Sci. 2002, 248, 203.
[23]
Atta, D. Y.; Negash, B. M.; Yekeen, N.; Habte, A. D. J. Mol. Liq. 2020, 321.
[24]
Zhao, T.-T.; Gong, H.-J.; Xu, G.-Y.; Cao, X.-L.; Song, X.-W.; Wang, H.-Y. Oilfield Chem. 2010, 27, 112 ; (in Chinese)
[24]
( 赵涛涛, 宫厚健, 徐桂英, 曹绪龙, 宋新旺, 王红艳, 油田化学 2010, 27, 112.)
[25]
Chen, B.-L.; Li, L.; Zhu, L.-Z. J. Zhejiang Univ. (Sci. Ed.) 2007, 34, 241 ; (in Chinese)
[25]
( 陈宝梁, 李菱, 朱利中, 浙江大学学报(理学版), 2007, 34, 241.)
[26]
Fu, M.-L.; Zhou, Y.-X. J. Oil Gas Technol. 2012, 34, 128 ; (in Chinese)
[26]
( 付美龙, 周玉霞, 石油天然气学报, 2012, 34, 128.)
[27]
Li, L.; Chen, J.; Xu, X.-P.; Liu, J.-W.; Xu, Z.-Z.; Sun, W.; Zhu, Z.-X.; Dai, C.-L. Oilfield Chem. 2021, 38, 90 ; (in Chinese)
[27]
( 李琳, 陈佳, 徐效平, 刘佳伟, 徐忠正, 孙雯, 朱芷萱, 戴彩丽, 油田化学 2021, 38, 90.)
[28]
Wang, X.-Z.; Kang, W.-L.; Meng, X.-C.; Fan, H.-M.; Xu, H.; Huang, J.-W.; Fu, J.-B.; Zhang, Y.-N. Acta Phys.-Chim. Sin. 2012, 28, 2285 ; (in Chinese)
[28]
( 王宪中, 康万利, 孟祥灿, 范海明, 徐海, 黄经纬, 傅建斌, 张一诺, 物理化学学报, 2012, 28, 2285.)
[29]
Lu, X.-G.; Wang, X.-Y.; Li, Q.; Wang, R.-J. Acta Chim. Sinica 2010, 68, 1229 ; (in Chinese)
[29]
( 卢祥国, 王晓燕, 李强, 王荣健, 化学学报 2010, 68, 1229.)
[30]
Cao, X.-L.; Lv, K.; Cui, X.-H.; Shi, J.; Yuan, S.-L. Acta Phys.-Chim. Sin. 2010, 26, 1959 ; (in Chinese)
[30]
( 曹绪龙, 吕凯, 崔晓红, 石静, 苑世领, 物理化学学报, 2010, 26, 1959.)
[31]
Zhang, P.-L. M.S. Thesis, Shandong University, Jinan, 2014 ; (in Chinese)
[31]
( 张培利, 硕士论文, 山东大学, 济南, 2014.)
[32]
Ren, X.-J.; Liu, N.; Qu, Z.-H.; Zhang, N.-S. Pet. Explor. Dev. 2005, 32, 123 ; (in Chinese)
[32]
( 任晓娟, 刘宁, 曲志浩, 张宁生, 石油勘探与开发, 2005, 32, 123.)
[33]
Jiang, P.; Zhang, G.-C.; Ge, J.-J.; Wang, D.-F.; Ma, T. Acta Pet. Sin., Pet. Process. Sect. 2008, 24, 222 ; (in Chinese)
[33]
( 蒋平, 张贵才, 葛际江, 王东方, 马涛, 石油学报(石油加工), 2008, 24, 222.)
[34]
Li, J.-G. M.S. Thesis, Northeast Petroleum University, Daqing, 2006 ; (in Chinese)
[34]
( 李俊刚, 硕士论文, 东北石油大学, 大庆, 2006.)
[35]
Jiang, P.; Zhang, G.-C. J. Petrochem. Univ. 2009, 22, 61 ; (in Chinese)
[35]
( 蒋平, 张贵才, 石油化工高等学校学报, 2009, 22, 61.)
[36]
Lundborg, M.; Lindahl, E. J. Phys. Chem. B 2014, 119, 810.
[37]
Li, Z.-Q.; Guo, X.-L.; Wang, H.-Y.; Li, Q.-H.; Yuan, S.-L.; Xu, G.-Y.; Liu, C.-P. Acta Phys.-Chim. Sin. 2009, 25, 16 ; (in Chinese)
[37]
( 李振泉, 郭新利, 王红艳, 李青华, 苑世领, 徐桂英, 刘成卜, 物理化学学报, 2009, 25, 16.)
[38]
Wang, Y.-F.; Yu, W.-Z.; Hu, S.-Q. J. Univ. Pet., China, Ed. Nat. Sci. 2011, 35, 153 ; (in Chinese)
[38]
( 王业飞, 于维钊, 胡松青, 中国石油大学学报(自然科学版), 2011, 35, 153.)
[39]
Alqam, M.; Abu-Khamsin, S. A.; Sultan, A. S.; Okasha, T.; Yildiz, H. O. Energy Fuels 2019, 33, 3.
Outlines

/