Aggregation-Induced Emission and Mechanochromism of the Tetraphenylbutadiene Derivatives Containing Different Alkyl Chains
Received date: 2021-12-12
Online published: 2022-01-24
Supported by
National Natural Science Foundation of China(21374010)
Series of 1,1,4,4-tetraphenylbuta-1,3-diene (TPB) derivatives, named TPB-COOCH3-1~6 and TPB-COOH-1~6 containing different alkyl chains and polar substituents, were designed and synthesized by terminal alkyne dimerization and Pd-catalyzed cross-coupling, etc. The target compounds were characterized by 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, mass spectrum, Fourier transform infrared, from which satisfactory results to their molecular structures were obtained. They all have good thermal stabilities with high decomposition temperatures above 310 ℃ based on thermogravimetric analysis. Investigation of the photophysical properties indicated that the target compounds exhibited significant aggregation-induced emission (AIE) features with higher αAIE (αAIE=ΦPL,solid/ΦPL,solu) values of 20.5~49.6 for TPB-COOCH3-1~6 and 14.4~26.3 for TPB-COOH-1~6, and their photoluminescence quantum yields in solid state (ΦPL,solid) were determined as high as 71.3%~89.1% and 34.5%~73.2% for TPB-COOCH3-1~6 and TPB-COOH-1~6, respectively. The different lengths of alkyl chains and the polarity of the other substituent had obvious effect on the regular molecular stacking of the target compounds when they were forced to aggregate or precipitate, which affects the intermolecular interaction and the restriction degree of the rotators, consequently influenced their AIE behavior in the tetrahydrofuran (THF)/H2O mixtures. For the compounds TPB-COOCH3-1~6 containing methyl esters and different alkyl chains, TPB-COOCH3-3, which is with n-propyl, exhibited the most significant fluorescence enhancement (I/I0=26.0) in the THF/H2O mixtures. While, for TPB-COOH-1~6 containing -COOH and alkyl chains, TPB-COOH-6, which is with n-hexyl, had the maximum I/I0 (I/I0=15.7) due to the increase of hydrophilicity. Careful comparison revealed that the I/I0 and ΦPL,solid values of TPB-COOCH3-1~6 were higher than those of TPB-COOH-1~6 containing same alkyl chains under the same measuring condition, mainly attributing to the interaction between the -COOH groups or between -COOH and the polar solvent molecules, which increasing the nonradiative energy decay and weakening fluorescence emission. Furthermore, the incorporation of bovine serum albumin (BSA) and human serum albumin (HSA) into TPB-COOH significantly enhanced the solid-state fluorescence emission, and the BSA and HSA also influenced the mechanochromic properties of the AIEgens containing -COOH. Especially, the fluorescence intensity increased obviously after grinding the doped system of TPB-COOH-2 and BSA, mainly because the existence and steric hindrance of BSA molecules weakened the π-π interaction of the planarized TPB-COOH-2 molecules, which effectively inhibiting the intramolecular rotation of benzene ring and reducing the nonradia tive energy loss.
Lulu Zhang , Yuanyuan Wang , Guinan Zhu , Wenbo Dai , Zixuan Zhao , Ying Zhao , Junge Zhi , Yuping Dong . Aggregation-Induced Emission and Mechanochromism of the Tetraphenylbutadiene Derivatives Containing Different Alkyl Chains[J]. Acta Chimica Sinica, 2022 , 80(3) : 282 -290 . DOI: 10.6023/A21120556
[1] | Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Tang, B. Z.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Chem. Commun. 2001, (18), 1740. |
[2] | Chen, Y.; Lam, J. W. Y.; Kwok, R. T. K.; Liu, B.; Tang, B. Z. Mater. Horiz. 2019, 6, 428. |
[3] | Zhang, Y.; Mao, H.; Xu, W.; Shi, J.; Cai, Z.; Tong, B.; Dong, Y. Chem. Eur. J. 2018, 24, 15965. |
[4] | Yuan, Y.; Zhang, C.-J.; Xu, S.; Liu, B. Chem. Sci. 2016, 7, 1862. |
[5] | Gao, H.; Jiao, D.; Ou, H.; Zhang, J.; Ding, D. Acta Chim. Sinica 2021, 79, 319. (in Chinese) |
[5] | (高贺麟, 焦迪, 欧翰林, 章经天, 丁丹, 化学学报, 2021, 79, 319.) |
[6] | Shao, L.; Sun, J.; Hua, B.; Huang, F. Chem. Commun. 2018, 54, 4866. |
[7] | Han, T.; Zhang, Y.; Feng, X.; Lin, Z.; Tong, B.; Shi, J.; Zhi, J.; Dong, Y. Chem. Commun. 2013, 49, 7049. |
[8] | Zhang, Y.; Han, T.; Gu, S.; Zhou, T.; Zhao, C.; Guo, Y.; Feng, X.; Tong, B.; Bing, J.; Shi, J.; Zhi, J.; Dong, Y. Chem. Eur. J. 2014, 20, 8856. |
[9] | Wang, Y.; Pan, X.; Peng, Z.; Zhang, Y.; Liu, P.; Cai, Z.; Tong, B.; Shi, J.; Dong, Y. Sens. Actuators B: Chem. 2018, 267, 351. |
[10] | Guo, Y.; Feng, X.; Han, T.; Wang, S.; Lin, Z.; Dong, Y.; Wang, B. J. Am. Chem. Soc. 2014, 136, 15485. |
[11] | Chen, J.; Xia, J.; Gao, W.-J.; Yu, H.-J.; Zhong, J.-X.; Jia, C.; Qin, Y.-S.; She, Z.; Kuang, D.-B.; Shao, G. ACS Appl. Mater. Interfaces 2020, 12, 21088. |
[12] | Guo, Y.; Gu, S.; Feng, X.; Wang, J.; Li, H.; Han, T.; Dong, Y.; Jiang, X.; James, T. D.; Wang, B. Chem. Sci. 2014, 5, 4388. |
[13] | He, Z.; Liu, P.; Zhang, S.; Yan, J.; Wang, M.; Cai, Z.; Wang, J.; Dong, Y. Angew. Chem. Int. Ed. 2019, 58, 3834. |
[14] | Liu, P.; Chen, D.; Wang, Y.; Tang, X.; Li, H.; Shi, J.; Tong, B.; Dong, Y. Biosens. Bioelectron. 2017, 92, 536. |
[15] | Bera, M. K.; Chakraborty, C.; Malik, S. J. Mater. Chem. C 2017, 5, 6872. |
[16] | Xu, Z.; Gu, J.; Qiao, X.; Qin, A.; Tang, B. Z.; Ma, D. ACS Photonics 2019, 6, 767. |
[17] | Zheng, K.; Ni, F.; Chen, Z.; Zhong, C.; Yang, C. Angew. Chem. Int. Ed. 2020, 59, 9972. |
[18] | Huang, G.; Jiang, Y.; Yang, S.; Li, B. S.; Tang, B. Z. Adv. Funct. Mater. 2019, 29, 1900516. |
[19] | Li, W.; Huang, Q.; Mao, Z.; Li, Q.; Jiang, L.; Xie, Z.; Xu, R.; Yang, Z.; Zhao, J.; Yu, T.; Zhang, Y.; Aldred, M. P.; Chi, Z. Angew. Chem. Int. Ed. 2018, 57, 12727. |
[20] | Liu, M.; Wu, Q.; Shi, H.; An, Z.; Huang, W. Acta Chim. Sinica 2018, 76, 246. (in Chinese) |
[20] | (刘明丽, 吴琪, 史慧芳, 安众福, 黄维, 化学学报, 2018, 76, 246.) |
[21] | Hu, M.; Feng, H.-T.; Yuan, Y.-X.; Zheng, Y.-S.; Tang, B. Z. Coordin. Chem. Rev. 2020, 416, 213329. |
[22] | Huang, Y.; You, X.; Wang, L.; Zhang, G.; Gui, S.; Jin, Y.; Zhao, R.; Zhang, D. Angew. Chem. Int. Ed. 2020, 59, 10042. |
[23] | Wang, J.; Chai, Z.; Wang, J.; Wang, C.; Han, M.; Liao, Q.; Huang, A.; Lin, P.; Li, C.; Li, Q.; Li, Z. Angew. Chem. Int. Ed. 2019, 58, 17297. |
[24] | Li, Q.; Li, Z. Acc. Chem. Res. 2020, 53, 962. |
[25] | Wang, J.; Li, Z. Acta Chim. Sinica 2021, 79, 575. (in Chinese) |
[25] | (王金凤, 李振, 化学学报, 2021, 79, 575.) |
[26] | Zhou, T.; Qian, Y.; Wang, H.; Feng, Q.; Xie, L.; Huang, W. Acta Chim. Sinica 2021, 79, 557. (in Chinese) |
[26] | (周涛, 钱越, 王宏健, 冯全友, 解令海, 黄维, 化学学报, 2021, 79, 557.) |
[27] | Liu, J.; Chen, C.; Ji, S.; Liu, Q.; Ding, D.; Zhao, D.; Liu, B. Chem. Sci. 2017, 8, 2782. |
[28] | Qu, J.; Ren, F.; Shi, J.; Tong, B.; Cai, Z.; Dong, Y. Chem. Eur. J. 2020, 26, 14947. |
[29] | Li, N.; Liu, Y. Y.; Li, Y.; Zhuang, J. B.; Cui, R. R.; Gong, Q.; Zhao, N.; Tang, B. Z. ACS Appl. Mater. Interfaces 2018, 10, 24249. |
[30] | Qiu, Z.; Yang, Z.; Chen, W.-C.; Xing, L.; Hu, S.; Ji, S.; Yang, Q.; Cai, N.; Ouyang, X.; Huo, Y. J. Mater. Chem. C 2020, 8, 4139. |
[31] | Li, J.-H.; Liang, Y.; Xie, Y.-X. J. Org. Chem. 2004, 69, 8125. |
[32] | Li, Y.; Lei, Y.; Dong, L.; Zhang, L.; Zhi, J.; Shi, J.; Tong, B.; Dong, Y. Chem. Eur. J. 2019, 25, 573. |
[33] | Yu, H.-X.; Zhi, J.; Wang, J.-L. J. Mater. Chem. C 2021, 9, 3882. |
[34] | Zhang, L.; Liang, K.; Dong, L.; Yang, P.; Li, Y.; Feng, X.; Zhi, J.; Shi, J.; Tong, B.; Dong, Y. New J. Chem. 2017, 41, 8877. |
[35] | Dong, Y.; Zhang, J.; Li, A.; Gong, J.; He, B.; Xu, S.; Yin, J.; Liu, S. H.; Tang, B. Z. J. Mater. Chem. C 2020, 8, 894. |
[36] | Xia, Z.; Shao, A.; Li, Q.; Zhu, S.; Zhu, W. Acta Chim. Sinica 2016, 74, 351. (in Chinese) |
[36] | (夏志清, 邵安东, 李强, 朱世琴, 朱为宏, 化学学报, 2016, 74, 351.) |
[37] | Zhang, X.; Zhang, Y.; Zhang, H.; Quan, Y.; Li, Y.; Cheng, Y.; Ye, S. Org. Lett. 2019, 21, 439. |
[38] | Peng, Z.; Ji, Y.; Huang, Z.; Tong, B.; Shi, J.; Dong, Y. Mater. Chem. Front. 2018, 2, 1175. |
[39] | Feng, X.; Tong, B.; Shen, J.; Shi, J.; Han, T.; Chen, L.; Zhi, J.; Lu, P.; Ma, Y.; Dong, Y. J. Phys. Chem. B 2010, 114, 16731. |
[40] | Gao, H.; Xu, D.; Wang, Y.; Zhang, C.; Yang, Y.; Liu, X.; Han, A.; Wang, Y. Dyes Pigments 2018, 150, 165. |
[41] | Lei, Y.; Lai, Y.; Dong, L.; Shang, G.; Cai, Z.; Shi, J.; Zhi, J.; Li, P.; Huang, X.; Tong, B.; Dong, Y. Chem. Eur. J. 2018, 24, 434. |
[42] | Song, W.; Zhi, J.; Wang, T.; Li, B.; Ni, S.; Ye, Y.; Wang, J. Chem. Asian J. 2019, 14, 3875. |
[43] | Ràfols, C.; Amézqueta, S.; Fuguet, E.; Bosch, E. J. Pharm. Biomed. Anal. 2018, 150, 452. |
[44] | Li, M.; Zhang, J.; Liu, D.; Zhu, Y.; Zhang, Y. Chem. J. Chinese Univ. 2021, 42, 731. (in Chinese) |
[44] | (李梦硕, 张静, 刘丹, 朱亚先, 张勇, 高等学校化学学报, 2021, 42, 731.) |
/
〈 |
|
〉 |