Investigation on the Luminescent Property and Application of In2BP3O12:Cr3+ Broadband Near-Infrared Phosphor※
Received date: 2021-12-30
Online published: 2022-02-07
Supported by
National Key R&D Program of China(2021YFB3500400); National Natural Science Foundation of China(11904363); Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-3)
Near-infrared (NIR) spectroscopy technique plays an important role in night-vision surveillance, food analysis, bioimaging and agriculture fields, and the development of compact and efficient NIR light source is a precondition for their massive commercial applications. Phosphor-converted light emitting diodes (pc-LED) have the advantages of compactness, low-cost, and long operating lifetime, thus have attracted considerable attentions in recent years. The key point is to exploit high performance NIR phosphors which can be excited efficiently by blue diode chips. A number of Cr3+-activated phosphors have been investigated aiming at NIR pc-LED applications. Nevertheless, most of the NIR phosphors show relatively short peak wavelength and narrow full width at half maximum (FWHM), resulting in spectral deficiency in the range 900~1100 nm. The phosphors with ultrabroad bandwidth are more desirable for spectroscopic applications. In this work, a novel broadband NIR light emitting phosphor In2BP3O12:Cr3+ is synthesized by solid state reaction method. The structure, concentration and temperature dependent luminescence properties, electron-phonon coupling as well as the NIR LED performances and applications of the In2BP3O12:Cr3+ have been investigated. Upon 480 nm excitation, the In2BP3O12:Cr3+ phosphor shows a broad emission band peaked at 950 nm and covering 750~1350 nm (bandwidth of ~210 nm), which is owing to the 4T2 → 4A2 transition of Cr3+ ions. It is found that the emission intensity of the phosphor at 373 K keep 40% of that at room temperature. A NIR pc-LED is packaged by combining the In2BP3O12:Cr3+ phosphor and a commercial blue InGaN chip, which generates broad NIR light emissions with an output power of ~5 mW at 60 mA drive current. When this NIR pc-LED is used to illuminate the human palm, the blood vessels in the palm are clearly imaged by a NIR charge coupled device (CCD) camera. These results suggest that the In2BP3O12:Cr3+ is a promising phosphor for fabricating NIR pc-LEDs, which are potential for non-destructive analysis in the fields of biology and medicine.
Key words: near infrared phosphor; In2BP3O12; LEDs; luminescent materials; broadband emission
Jingrong Zhang , Decai Huang , Congcong Huang , Sisi Liang , Haomiao Zhu . Investigation on the Luminescent Property and Application of In2BP3O12:Cr3+ Broadband Near-Infrared Phosphor※[J]. Acta Chimica Sinica, 2022 , 80(4) : 453 -459 . DOI: 10.6023/A21120598
[1] | (a) Eggebrecht, A. T.; Ferradal, S. L.; Robichaux-Viehoever, A.; Hassanpour, M. S.; Dehghani, H.; Snyder, A. Z.; Hershey, T.; Culver, J, P. Nat. Photonics 2014, 8, 448. |
[1] | (b) Ferrari, M.; Quaresima, V. Neuroimage. 2012, 63, 921. |
[1] | (c) Qiao, J. W.; Zhou, G. J.; Zhou, Y. Y.; Zhang, Q. Y.; Xia, Z. Nat. Commun. 2019, 10, 5267. |
[1] | (d) Ye, M.; Gao, Z.; Li, Z.; Yuan, Y.; Yue, T. Food Chem. 2016, 190, 701. |
[1] | (e) Luo, X. R.; Chen, M. W.; Yang, Q. L. Acta Chim. Sinica 2020, 78, 373. (in Chinese) |
[1] | (罗兴蕊, 陈敏文, 杨晴来, 化学学报,, 2020, 78, 373). |
[1] | (f) Wang, L. F.; Qian, Y. Chin. J. Org. Chem. 2020, 40, 1246. (in Chinese) |
[1] | (王凌峰, 钱鹰, 有机化学, 2020, 40, 1246). |
[2] | (a) Amara, A.; Gacem, L.; Gueddim, A.; Belbal, R.; Soltani, M. T.; Guerbous, L. Phys. B (Amsterdam, Neth.). 2018, 545, 408. |
[2] | (b) Hayashi, D.; van Dongen, A. M.; Boerekamp, J.; Spoor, S.; Lucassen, G.; Schleipen |
[3] | Zhou, Y. P.; Li, X. J.; Seto, T.; Wang, Y. H. ACS Sustainable Chem. Eng. 2021, 9, 3145. |
[4] | (a) Zhang, L. L.; Zhang., J. H.; Hao, Z. D.; Wu, H.; Pan, G. H.; Wu, H. J.; Zhang, X. Journal of Luminescence 2019, 12, 1449. (in Chinese) |
[4] | (张亮亮, 张家骅, 郝振东, 吴昊, 潘国徽, 武华君, 张霞, 发光学报, 2019, 12, 1449. |
[4] | (b) Yang, C. T.; Liu, G. X.; Chen, Q. Q.; Wang, W. J.; Meng, J. X. J. Rare Earth. 2010, 28, 125. (in Chinese) |
[4] | (杨创涛, 刘关喜, 陈清清, 万文娇, 孟建新, 稀土学报, 2010, 28, 125.) |
[5] | (a) Zhao, M.; Liao, H. J.; Molokeev, M. S.; Zhou, Y. Y.; Zhang, Q. Y.; Liu, Q. L.; Xia, Z. G. Light: Sci. Appl. 2019, 8, 38. |
[5] | (b) Pulli, T.; Dönsberg, T.; Poikonen, T.; Manoocheri, F.; Kärhä, P.; Ikonen, E. Light: Sci. Appl. 2015, 4, e332. |
[5] | (c) Wu, J. M.; Huang, D. C.; Liang, S. S.; Xu, S. L.; Zhu, H. M. Chin. J. Lumin. 2021, 42, 793. (in Chinese) |
[5] | (邬金闽, 黄得财, 梁思思, 徐寿亮, 朱浩淼, 发光学报, 2021, 42, 793.) |
[5] | (d) Fang, L. M.; Hao, Z. D.; Zhang, L. L.; Wu, H.; Wu, H. J.; Pan, G. H.; Zhang, J. H. Laser & Optoelectronics Progress. 2021, 58, 1516008. (in Chinese) |
[5] | (方立民, 郝振东, 张亮亮, 吴昊, 武华君, 潘国徽, 张家骅, 激光与光电子学进展, 2021, 58, 1516008). |
[6] | (a) Tang, Z. B.; Zhang, Q.; Cao, Y. X.; Li, Y. X.; Wang, Y. H. Chem. Eng. J. 2020, 388, 124231. |
[6] | (b) Sun, Q.; Wang, S. Y.; Li, B.; Guo, H.; Huang, X. Y. J. Lumin. 2018, 203, 371. |
[6] | (c) Wei, Y.; Dang, P. P.; Dai, Z. G.; Li, G. G.; Lin, J. Chem. Mater. 2021, 33, 5496. |
[6] | (d) Wang, C. P.; Zhang, Y. X.; Han, X.; Hu, D. F.; He, D. P.; Wang, X. M.; Jiao, H. J. Mater. Chem. C 2021, 9, 4583. |
[6] | (e) Feng, W.; Sun, L. D.; Zhang, J.; Jia, C. J.; Yan, C. H. Sci. China Chem. 2012, 42, 1372. (in Chinese) |
[6] | (冯玮, 孙聆东, 张晶, 贾春江, 严纯华, 中国科学:化学, 2012, 42, 1372). |
[7] | Zhang, Q.; Wang, X. C.; Tang, Z. B.; Wang, Y. H. Chem. Commun. 2020, 56, 4644. |
[8] | (a) Long, J. Q.; Yuan, X. Y.; Ma, C. Y.; Du, M. M.; Ma, X. L.; Wen, Z. C.; Ma, R.; Wang, Y. Z.; Cao, Y. G. RSC Adv. 2018, 8, 1469. |
[8] | (b) Zheng, J.; Cheng, Y. Opt. Mater. 2016, 62, 341. |
[8] | (c) Hu, R.; Zhang, Y.; Zhao, Y.; Wang, X. S.; Li, G. R.; Wang, C. Y. Chem. Eng. J. 2020, 392. |
[9] | He, F. Q.; Wu, J. C.; Shao, P. S.; Song, E. H. Laser & Optoelectronics Progress. 2021, 58, 1516009. (in Chinese) |
[9] | (方立民, 郝振东, 张亮亮, 吴昊, 武华君, 潘国徽, 张家骅, 激光与光电子学进展, 2021, 58, 1516009). |
[10] | (a) Zhang, Q. Q.; Liu, D. J.; Dang, P. P.; Lian, H. Z.; Li, G. G.; Lin, J. Laser Photonics Rev. 2021, 16, 2. |
[10] | (b) Liu, D. J.; Liu, G. G.; Dang, P. P.; Zhang, Q. Q.; Wei, Y.; Lian, H. Z.; Shang, M. M.; Lin, C. C.; Lin, J. Angew. Chem., Int. Ed. 2021, 60, 14644. |
[11] | (a) Li, Y.; Li, Y. Y.; Chen, R. C.; Sharafudeen, K.; Zhou, S. F.; Gecevicius, M.; Wang, H. H.; Dong, G. P.; Wu, Y. L.; Qin, X. X.; Qiu, J. R. NPG Asia Mater. 2015, 7, e180. |
[11] | (b) Yang, J.; Liu, Y. X.; Zhao, Y. Y.; Gong, Z.; Zhang, M.; Yan, D. T.; Zhu, H. C.; Liu, C. G.; Xu, C. S.; Zhang, H. Chem. Mater. 2017, 29, 8119. |
[12] | (a) Zhang, L. L.; Zhang, S.; Hao, Z. D.; Zhang, X.; Pan, G. H.; Luo, Y. S.; Wu, H. J.; Zhang, J. H. J. Mater. Chem. C 2018, 6, 4967. |
[12] | (b) Zhang, L. L.; Wang, D. D.; Hao, Z. D.; Zhang, X.; Pan, G. H.; Wu, H.; Zhang, J. H. Adv. Opt. Mater. 2019, 7, 12. |
[12] | (c) Liu, C. Y.; Xia, Z. G.; Molokeev, M. S.; Liu, Q. L. J. Am. Ceram. Soc. 2015, 98, 1870. |
[13] | (a) Shao, Q. Y.; Ding, H.; Yao, L. Q.; Xu, J. F.; Liang, C.; Jiang, J. Q. RSC Adv. 2018, 8, 12035. |
[13] | (b) Liu, P. J.; Liu, J.; Zheng, X.; Luo, H. D.; Li, X. Q.; Yao, Z. L.; Yu, X. B.; Shi, X. M.; Hou, B. H.; Xia, Y. S. J. Mater. Chem. C 2014, 2, 5769. |
[14] | (a) Yan, W. Z.; Liu, F.; Lu, Y. Y.; Wang, X. J.; Yin, M.; Pan, Z. W. Opt. Express. 2010, 18, 20215. |
[14] | (b) Bessiere, A.; Jacquart, S.; Priolkar, K.; Lecointre, A.; Viana, B.; Gourier, D. Opt. Express. 2011, 19, 10131. |
[15] | (a) Shao, Q. Y.; Ding, H.; Yao, L. Q.; Xu, J. F.; Liang, C.; Li, Z. H.; Dong, Y.; Jiang, J. Q. Optics. Lett. 2018, 43, 5251. |
[15] | (b) Xu, X. X.; Shao, Q. Y.; Yao, L. Q.; Dong, Y.; Jiang, J. Q. Chem. Eng. J. 2020, 383. |
[15] | (c) Stefańska, D.; Bondzior, B.; Vu, T. H. Q.; Grodzicki, M.; Dereń, P. J. Dalton Trans. 2021, 50, 9851. |
[15] | (d) Zeng, H.; Zhou, T.; Wang, L.; Xie, R. J. Chem. Mater. 2019, 31, 5245. |
[16] | Song, Q. Q.; Liu, Z. H.; Jiang, H. J.; Luo, Z. H.; Sun, P.; Liu, G. Q.; Liu, Y. F.; Jiang, H. C.; Jiang, J. J. Am. Ceram. Soc. 2021, 104, 5235. |
[17] | Zhang, W. L.; Lin, C. S.; Geng, L.; Li, Y. Y.; Zhang, H.; He, Z. Z.; Cheng, W. D. J. Solid State Chem. 2010, 183, 1108. |
[18] | McKittrick, J.; Shea-Rohwer, L. E.; Green, D. J. J. Am. Ceram. Soc. 2014, 97, 1327. |
[19] | Wang, S.; Pang, R.; Li, D.; Li, C. Y.; Zhang, H. J. Chin. J. Appl. Chem. 2021, 38, 1469. (in Chinese) |
[19] | (王森, 庞然, 李达, 李成宇, 张洪杰, 应用化学, 2021, 38, 1469). |
/
〈 |
|
〉 |