Review

Lanthanide-based NIR-II Fluorescent Nanoprobes and Their Biomedical Applications

  • Zhifen Wu ,
  • Jianxi Ke ,
  • Yongsheng Liu ,
  • Pengming Sun ,
  • Maochun Hong
Expand
  • a Department of Gynecology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000
    b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002
    c Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
† These authors contributed equally to this work.

Received date: 2021-12-18

  Online published: 2022-02-07

Supported by

Fujian Science & Technology Innovation Laboratory for Optoelectronic Information(2020ZZ114); Key Research Program of Frontier Science CAS(QYZDY-SSW-SLH025); National Natural Science Foundation of China(21871256); Fund of Advanced Energy Science and Technology Guangdong Laboratory(DJLTN0200/DJLTN0240)

Abstract

Compared with traditional fluorescent biological imaging, the second near-infrared (NIR-II) fluorescent biological imaging technology has the advantages of high spatial resolution, excellent signal-to-background ratio, large imaging depth, low autofluorescence, and less biological damage, which is widely used in disease diagnosis, non-invasive treatment and other fields. Among diverse NIR-II fluorescent nanomaterials, NIR-II emitting lanthanide based nanoprobes (NIR-II Ln-NPs) have received extensive attention owing to their exceptional merits like good photochemical-stability, narrow emission band, tunable emission colors and long-lived lifetime. In this review, we provide a comprehensive survey of the latest advances in developing lanthanide-based NIR-II emitting nanoprobes as deep-tissue-penetration fluorescent diagnostic and therapeutic agents, which cover from their design strategy, controllable synthesis, surface functionalization, optical properties as well as their biomedical applications, with an emphasis on heterogeneous and homogeneous in-vitro biodetection of tumor markers and multimodal bioimaging of various tumor tissues. Some future prospects and challenges in this rapidly growing field are finally summarized.

Cite this article

Zhifen Wu , Jianxi Ke , Yongsheng Liu , Pengming Sun , Maochun Hong . Lanthanide-based NIR-II Fluorescent Nanoprobes and Their Biomedical Applications[J]. Acta Chimica Sinica, 2022 , 80(4) : 542 -552 . DOI: 10.6023/A21120571

References

[1]
Zhang, N. N.; Lu, C. Y.; Chen, M. J.; Xu, X. L.; Shu, G. F.; Du, Y. Z.; Ji, J. S. J. Nanobiotechnol. 2021, 19, 132.
[2]
Gao, H. Q.; Jiao, D.; Ou, H. L.; Zhang, J. T.; Ding, D. Acta Chim. Sinica 2021, 79, 319. (in Chinese)
[2]
(高贺麒, 焦迪, 欧翰林, 章经天, 丁丹, 化学学报, 2021, 79, 319.)
[3]
Ren, J. B.; Wang, L.; Guo, R.; Tang, Y. H.; Zhou, H. M.; Lin, W. Y. Acta Chim. Sinica 2021, 79, 87. (in Chinese)
[3]
(任江波, 王蕾, 郭锐, 唐永和, 周红梅, 林伟英, 化学学报, 2021, 79, 87.)
[4]
Meng, X.; Wu, Y.; Bu, W. Adv. Healthcare Mater. 2021, 10, e2000912.
[5]
Pan, L. X.; Huang, Y. Q.; Sheng, K.; Zhang, R.; Fan, Q. L.; Huang, W. Acta Chim. Sinica 2021, 79, 1097. (in Chinese)
[5]
(潘立祥, 黄艳琴, 盛况, 张瑞, 范曲立, 黄维, 化学学报, 2021, 79, 1097.)
[6]
Huang, J.; Wang, C.; Lin, M. G.; Zeng, F.; Wu, S. Z. Acta Chim. Sinica 2021, 79, 331. (in Chinese)
[6]
(黄靖, 王超, 林敏刚, 曾钫, 吴水珠, 化学学报, 2021, 79, 331.)
[7]
Shao, Y.; Yang, G. S.; Zhang, J. L.; Luo, M.; Ma, L. L.; Xu, D. D. Acta Chim. Sinica 2021, 79, 716. (in Chinese)
[7]
(邵阳, 杨国胜, 张继龙, 罗敏, 马玲玲, 徐殿斗, 化学学报, 2021, 79, 716.)
[8]
Buckingham, F.; Gouverneur, V. Chem. Sci. 2016, 7, 1645.
[9]
Lyu, Y.; Zhen, X.; Miao, Y. S.; Pu, K. Y. ACS Nano 2017, 11, 358.
[10]
Chen, H.; Zhang, W.; Zhu, G.; Xie, J.; Chen, X. Nat. Rev. Mater. 2017, 2, 17024.
[11]
Shen, Z.; Song, J.; Zhou, Z.; Yung, B. C.; Aronova, M. A.; Li, Y.; Dai, Y.; Fan, W.; Liu, Y.; Li, Z.; Ruan, H.; Leapman, R. D.; Lin, L.; Niu, G.; Chen, X.; Wu, A. Adv. Mater. 2018, 30, e1803163.
[12]
Dong, H.; Sun, L. D.; Yan, C. H. Chem. Soc. Rev. 2015, 44, 1608.
[13]
Sun, Y.; Ma, X. W.; Cheng, K.; Wu, B. Y.; Duan, J. L.; Chen, H.; Bu, L. H.; Zhang, R. P.; Hu, X. M.; Deng, Z. X.; Xing, L.; Hong, X. C.; Cheng, Z. Angew. Chem., Int. Ed. 2015, 54, 5981.
[14]
Del Rosal, B.; Villa, I.; Jaque, D.; Sanz-Rodriguez, F. J. Biophotonics 2016, 9, 1059.
[15]
Wei, T. W.; Jiang, L.; Chen, Y. H.; Chen, X. Q. Acta Chim. Sinica 2021, 79, 58. (in Chinese)
[15]
(魏廷文, 江龙, 陈亚辉, 陈小强, 化学学报, 2021, 79, 58.)
[16]
Li, Y.; Wang, X.; Xie, X. L.; Zhang, J.; Tang, B. Acta Chim. Sinica 2021, 79, 36. (in Chinese)
[16]
(李勇, 王栩, 解希雷, 张建, 唐波, 化学学报, 2021, 79, 36.)
[17]
Yang, Z. G.; Xiong, J.; Zhang, W.; Li, W.; Pan, W. H.; Zhang, J. G.; Gu, Z. Y.; Huang, M. N.; Qu, J. L. Acta Chim. Sinica 2020, 78, 130. (in Chinese)
[17]
(杨志刚, 熊佳, 张炜, 李文, 潘文慧, 张建国, 顾振宇, 黄美娜, 屈军乐, 化学学报, 2020, 78, 130.)
[18]
Liu, H. W.; Zhu, L. M.; Lou, X. F.; Yuan, L.; Zhang, X. B. Acta Chim. Sinica 2020, 78, 1240. (in Chinese)
[18]
(刘红文, 朱隆民, 娄霄峰, 袁林, 张晓兵, 化学学报, 2020, 78, 1240.)
[19]
Zheng, B.; Cheng, S.; Dong, H. Z.; Zhu, J. M.; Han, Y.; Yang, L.; Hu, J. M. Acta Chim. Sinica 2020, 78, 1089. (in Chinese)
[19]
(郑斌, 程盛, 董华泽, 朱金苗, 韩钰, 杨亮, 胡进明, 化学学报, 2020, 78, 1089.)
[20]
Diao, S.; Hong, G. S.; Antaris, A. L.; Blackburn, J. L.; Cheng, K.; Cheng, Z.; Dai, H. J. Nano Res. 2015, 8, 3027.
[21]
Hemmer, E.; Benayas, A.; Legare, F.; Vetrone, F. Nanoscale Horiz. 2016, 1, 168.
[22]
Yang, Q.; Ma, Z.; Wang, H.; Zhou, B.; Zhu, S.; Zhong, Y.; Wang, J.; Wan, H.; Antaris, A.; Ma, R.; Zhang, X.; Yang, J.; Zhang, X.; Sun, H.; Liu, W.; Liang, Y.; Dai, H. Adv. Mater. 2017, 29, 1605497.
[23]
Ding, F.; Zhan, Y. B.; Lu, X. J.; Sun, Y. Chem. Sci. 2018, 9, 4370.
[24]
Yu, M.; Zhang, Z. J.; Zhu, G. W.; Gu, Z. H.; Duan, Y. L.; Yu, L. C.; Gao, G. B.; Sun, T. L. Acta Chim. Sinica 2021, 79, 1281. (in Chinese)
[24]
(余梦, 张子俊, 朱国委, 谷振华, 段玉霖, 余良翀, 高冠斌, 孙涛垒, 化学学报, 2021, 79, 1281.)
[25]
Sang, R. Y.; Xu, X. P.; Wang, Q.; Fan, Q. L.; Huang, W. Acta Chim. Sinica 2020, 78, 901. (in Chinese)
[25]
(桑若愚, 许兴鹏, 王其, 范曲立, 黄维, 化学学报, 2020, 78, 901.)
[26]
Luo, X. R.; Chen, M.; Yang, Q. L. Acta Chim. Sinica 2020, 78, 373. (in Chinese)
[26]
(罗兴蕊, 陈敏文, 杨晴来, 化学学报, 2020, 78, 373.)
[27]
Zhong, Y.; Ma, Z.; Wang, F.; Wang, X.; Yang, Y.; Liu, Y.; Zhao, X.; Li, J.; Du, H.; Zhang, M.; Cui, Q.; Zhu, S.; Sun, Q.; Wan, H.; Tian, Y.; Liu, Q.; Wang, W.; Garcia, K. C.; Dai, H. Nat. Biotechnol. 2019, 37, 1322.
[28]
Peng, P.; Wu, N.; Ye, L.; Jiang, F.; Feng, W.; Li, F.; Liu, Y.; Hong, M. ACS Nano 2020, 14, 16672.
[29]
Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Nat. Commun. 2013, 4, 2199.
[30]
Zhou, L.; Wang, R.; Yao, C.; Li, X.; Wang, C.; Zhang, X.; Xu, C.; Zeng, A.; Zhao, D.; Zhang, F. Nat. Commun. 2015, 6, 6938.
[31]
Fan, Y.; Wang, P.; Lu, Y.; Wang, R.; Zhou, L.; Zheng, X.; Li, X.; Piper, J. A.; Zhang, F. Nat. Nanotechnol. 2018, 13, 941.
[32]
Wang, P.; Fan, Y.; Lu, L.; Liu, L.; Fan, L.; Zhao, M.; Xie, Y.; Xu, C.; Zhang, F. Nat. Commun. 2018, 9, 2898.
[33]
Song, R. X.; Wang, H.; Zhang, M.; Liu, Y. Y.; Meng, X. F.; Zhai, S. J.; Wang, C. C.; Gong, T.; Wu, Y. L.; Jiang, X. W.; Bu, W. B. Angew. Chem., Int. Ed. 2020, 59, 21032.
[34]
Yan, T.; Liu, Z.; Song, X. Y.; Zhang, S. S. Acta Chim. Sinica 2020, 78, 657. (in Chinese)
[34]
(闫涛, 刘振华, 宋昕玥, 张书圣, 化学学报, 2020, 78, 657.)
[35]
Qin, X.; Liu, X. W.; Huang, W.; Bettinelli, M.; Liu, X. G. Chem. Rev. 2017, 117, 4488.
[36]
Yu, S.; Tu, D.; Lian, W.; Xu, J.; Chen, X. Sci. China Mater. 2019, 62, 1071.
[37]
Ge, X. Q.; Wei, R. Y.; Sun, L. N. J. Mater. Chem. B 2020, 8, 10257.
[38]
Ding, S. W.; Lu, L. F.; Fan, Y.; Zhang, F. J. Rare Earths 2020, 38, 451.
[39]
Liu, Q.; Sun, Y.; Yang, T.; Feng, W.; Li, C.; Li, F. J. Am. Chem. Soc. 2011, 133, 17122.
[40]
Wang, R.; Li, X. M.; Zhou, L.; Zhang, F. Angew. Chem., Int. Ed. 2014, 53, 12086.
[41]
He, F.; Yang, G. X.; Yang, P. P.; Yu, Y. X.; Lv, R. C.; Li, C. X.; Dai, Y. L.; Gai, S. L.; Lin, J. Adv. Funct. Mater. 2015, 25, 3966.
[42]
Tan, M.; Del Rosal, B.; Zhang, Y.; Martin Rodriguez, E.; Hu, J.; Zhou, Z.; Fan, R.; Ortgies, D. H.; Fernandez, N.; Chaves-Coira, I.; Nunez, A.; Jaque, D.; Chen, G. Nanoscale 2018, 10, 17771.
[43]
Zhang, H.; Fan, Y.; Pei, P.; Sun, C.; Lu, L.; Zhang, F. Angew. Chem., Int. Ed. 2019, 58, 10153.
[44]
Zhang, M. R.; Zheng, W.; Liu, Y.; Huang, P.; Gong, Z. L.; Wei, J. J.; Gao, Y.; Zhou, S. Y.; Li, X. J.; Chen, X. Y. Angew. Chem., Int. Ed. 2019, 58, 9556.
[45]
Wei, J. J.; Liu, Y. Y.; Zhang, M. R.; Zheng, W.; Huang, P.; Gong, Z. L.; Li, R. F.; Chen, X. Y. Sci. China Mater. 2021, DOI: 10.1007/s40843-021-1801-8.
[46]
Zhou, B.; Yan, L.; Huang, J. S.; Liu, X. L.; Tao, L. L.; Zhang, Q. Y. Nat. Photonics 2020, 14, 760.
[47]
Fan, Y.; Zhang, F. Adv. Opt. Mater. 2019, 7, 1801417.
[48]
Ansari, A. A.; Parchur, A. K.; Nazeeruddin, M. K.; Tavakoli, M. M. Coord. Chem. Rev. 2021, 444, 214040.
[49]
You, W. W.; Tu, D. T.; Zheng, W.; Shang, X. Y.; Song, X. R.; Zhou, S. Y.; Liu, Y.; Li, R. F.; Chen, X. Y. Nanoscale 2018, 10, 11477.
[50]
Zhang, D.; Dong, Y. H.; Li, D. G.; Jia, H.; Qin, W. P. Nano Res. 2021, 14, 4760.
[51]
Zhu, X.; Liu, X.; Zhang, H.; Zhao, M.; Pei, P.; Chen, Y.; Yang, Y.; Lu, L.; Yu, P.; Sun, C.; Ming, J.; Abraham, I. M.; El-Toni, A. M.; Khan, A.; Zhang, F. Angew. Chem., Int. Ed. 2021, 60, 23545.
[52]
Zou, W. Q.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Nat. Photonics 2012, 6, 560.
[53]
Wang, D.; Wang, D. P.; Kuzmin, A.; Pliss, A.; Shao, W.; Xia, J.; Qu, J. L.; Prasad, P. N. Adv. Opt. Mater. 2018, 6, 1701142.
[54]
Zhao, M.; Li, B.; Wu, Y.; He, H.; Zhu, X.; Zhang, H.; Dou, C.; Feng, L.; Fan, Y.; Zhang, F. Adv. Mater. 2020, 32, e2001172.
[55]
Hazra, C.; Ullah, S.; Correales, Y. E. S.; Caetano, L. G.; Ribeiro, S. J. L. J. Mater. Chem. C 2018, 6, 4777.
[56]
Garfield, D. J.; Borys, N. J.; Hamed, S. M.; Torquato, N. A.; Tajon, C. A.; Tian, B.; Shevitski, B.; Barnard, E. S.; Suh, Y. D.; Aloni, S.; Neaton, J. B.; Chan, E. M.; Cohen, B. E.; Schuck, P. J. Nat. Photonics 2018, 12, 402.
[57]
Song, X.; Li, S.; Guo, H.; You, W.; Shang, X.; Li, R.; Tu, D.; Zheng, W.; Chen, Z.; Yang, H.; Chen, X. Angew. Chem., Int. Ed. 2019, 58, 18981.
[58]
Yang, J. Y.; He, S. Q.; Hu, Z. H.; Zhang, Z. Y.; Cao, C. G.; Cheng, Z.; Fang, C. H.; Tian, J. Nano Today 2021, 38, 101120.
[59]
Ren, F.; Liu, H. H.; Zhang, H.; Jiang, Z. L.; Xia, B.; Genevois, C.; He, T.; Allix, M.; Sun, Q.; Li, Z.; Gao, M. Y. Nano Today 2020, 34, 100905.
[60]
Luo, Z.; Hu, D.; Gao, D.; Yi, Z.; Zheng, H.; Sheng, Z.; Liu, X. Adv. Mater. 2021, 33, e2102950.
[61]
Zhang, W.; Xu, C.; Yin, G. Q.; Zhang, X. E.; Wang, Q.; Li, F. Nanotheranostics 2017, 1, 358.
[62]
Zhao, M.; Wang, R.; Li, B.; Fan, Y.; Wu, Y.; Zhu, X.; Zhang, F. Angew. Chem., Int. Ed. 2019, 58, 2050.
[63]
Wang, S.; Liu, L.; Fan, Y.; El-Toni, A. M.; Alhoshan, M. S.; Li, D.; Zhang, F. Nano Lett. 2019, 19, 2418.
[64]
Jiang, A.; Liu, Y.; Ma, L.; Mao, F.; Liu, L.; Zhai, X.; Zhou, J. ACS Appl. Mater. Interfaces 2019, 11, 6820.
[65]
Jiang, M. Y.; Liu, H. R.; Zeng, S. J.; Hao, J. H. Adv. Ther. 2019, 2, 1800153.
[66]
Yu, Z.; Hu, W.; Zhao, H.; Miao, X.; Guan, Y.; Cai, W.; Zeng, Z.; Fan, Q.; Tan, T. T. Y. Angew. Chem., Int. Ed. 2019, 58, 8536.
[67]
He, S. Q.; Song, J.; Liu, J. F.; Liu, L. W.; Qu, J. L.; Cheng, Z. Adv. Opt. Mater. 2019, 7, 1900045.
[68]
Xu, J. T.; Gulzar, A.; Yang, P. P.; Bi, H. T.; Yang, D.; Gai, S. L.; He, F.; Lin, J.; Xing, B. G.; Jin, D. Y. Coord. Chem. Rev. 2019, 381, 104.
[69]
Zhang, M.; Wang, Z.; Wang, C.; Wu, Y.; Li, Z.; Liu, Z. ACS Nano 2021, 15, 11940.
[70]
Zheng, B. Z.; Zhong, D. N.; Xie, T. T.; Zhou, J.; Li, W. L.; Ilyas, A.; Lu, Y. H.; Zhou, M.; Deng, R. R. Chem 2021, 7, 1615.
[71]
Dharap, S. S.; Wang, Y.; Chandna, P.; Khandare, J. J.; Qiu, B.; Gunaseelan, S.; Sinko, P. J.; Stein, S.; Farmanfarmaian, A.; Minko, T. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 12962.
[72]
Hu, X. L.; Kwon, N.; Yan, K. C.; Sedgwick, A. C.; Chen, G. R.; He, X. P.; James, T. D.; Yoon, J. Adv. Funct. Mater. 2020, 30, 1907906.
[73]
Siwak, D. R.; Tari, A. M.; Lopez-Berestein, G. Clin. Cancer Res. 2002, 8, 955.
[74]
Bae, Y. H.; Park, K. J. Controlled Release 2011, 153, 198.
[75]
Denison, T. A.; Bae, Y. H. J. Controlled Release 2012, 164, 187.
[76]
Frenzel, C.; Teschke, R. Int. J. Mol. Sci. 2016, 17, 588.
[77]
Wang, S. M.; Long, S. Q.; Wu, W. Y. Am. J. Chin. Med. 2018, 46, 953.
[78]
Pan, X. Q.; Zhou, J.; Chen, Y.; Xie, X. F.; Rao, C. L.; Liang, J.; Zhang, Y.; Peng, C. Toxicol. Lett. 2020, 323, 48.
[79]
Zhong, Y.; Gu, J.; Su, Y.; Zhao, L.; Zhou, Y.; Peng, J. Chem. Eng. J. 2021, 433, 133263.
[80]
Ke, J.; Lu, S.; Shang, X.; Liu, Y.; Guo, H.; You, W.; Li, X.; Xu, J.; Li, R.; Chen, Z.; Chen, X. Adv. Sci. 2019, 6, 1901874.
[81]
Lu, Y. Q.; Lu, J.; Zhao, J. B.; Cusido, J.; Raymo, F. M.; Yuan, J. L.; Yang, S.; Leif, R. C.; Huo, Y. J.; Piper, J. A.; Robinson, J. P.; Goldys, E. M.; Jin, D. Y. Nat. Commun. 2014, 5, 3741.
[82]
Lu, Y. Q.; Zhao, J. B.; Zhang, R.; Liu, Y. J.; Liu, D. M.; Goldys, E. M.; Yang, X. S.; Xi, P.; Sunna, A.; Lu, J.; Shi, Y.; Leif, R. C.; Huo, Y. J.; Shen, J.; Piper, J. A.; Robinson, J. P.; Jin, D. Y. Nat. Photonics 2014, 8, 33.
[83]
Sparks, H.; Kondo, H.; Hooper, S.; Munro, I.; Kennedy, G.; Dunsby, C.; French, P.; Sahai, E. Nat. Commun. 2018, 9, 2662.
[84]
DeRosa, M. C.; Crutchley, R. J. Coord. Chem. Rev. 2002, 233, 351.
[85]
Kachynski, A. V.; Pliss, A.; Kuzmin, A. N.; Ohulchanskyy, T. Y.; Baev, A.; Qu, J.; Prasad, P. N. Nat. Photonics 2014, 8, 455.
[86]
Wu, W. B.; Mao, D.; Xu, S. D.; Kenry; Hu, F.; Li, X. Q.; Kong, D. L.; Liu, B. Chem 2018, 4, 1937.
[87]
Ravetz, B. D.; Pun, A. B.; Churchill, E. M.; Congreve, D. N.; Rovis, T.; Campos, L. M. Nature 2019, 565, 343.
[88]
Wenger, O. S. Nat. Chem. 2020, 12, 323.
[89]
Chen, G. Y.; Qju, H. L.; Prasad, P. N.; Chen, X. Y. Chem. Rev. 2014, 114, 5161.
[90]
Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Nat. Commun. 2016, 7, 10437.
[91]
Liu, Y.; Zhu, X.; Wei, Z.; Feng, W.; Li, L.; Ma, L.; Li, F.; Zhou, J. Adv. Mater. 2021, 33, e2008615.
[92]
Ke, J.; Lu, S.; Shang, X.; Liu, Y.; Guo, H.; You, W.; Li, X.; Xu, J.; Li, R.; Chen, Z.; Chen, X. Adv. Sci. 2019, 6, 1901874.
[93]
Xiong, L.; Yang, T.; Yang, Y.; Xu, C.; Li, F. Biomaterials 2010, 31, 7078.
[94]
Wang, M.; Song, J.; Zhou, F.; Hoover, A. R.; Murray, C.; Zhou, B.; Wang, L.; Qu, J.; Chen, W. R. Adv. Sci. 2019, 6, 1802157.
[95]
Liang, S.; Sun, C.; Yang, P.; Ma, P.; Huang, S.; Cheng, Z.; Yu, X.; Lin, J. Biomaterials 2020, 240, 119850.
[96]
Zhou, J. C.; Yang, Z. L.; Dong, W.; Tang, R. J.; Sun, L. D.; Yan, C. H. Biomaterials 2011, 32, 9059.
[97]
Yang, Z.; Loh, K. Y.; Chu, Y. T.; Feng, R.; Satyavolu, N. S. R.; Xiong, M.; Nakamata Huynh, S. M.; Hwang, K.; Li, L.; Xing, H.; Zhang, X.; Chemla, Y. R.; Gruebele, M.; Lu, Y. J. Am. Chem. Soc. 2018, 140, 17656.
[98]
Sun, Y.; Feng, W.; Yang, P. Y.; Huang, C. H.; Li, F. Y. Chem. Soc. Rev. 2015, 44, 1509.
[99]
Smith, A. M.; Mancini, M. C.; Nie, S. M. Nat. Nanotechnol. 2009, 4, 710.
[100]
Wang, T.; Li, Y.; Yan, L.; Liang, Q.; Wang, X.; Tao, J.; Yang, J.; Qiu, Y.; Meng, Y.; Mao, B.; Zhao, S.; Zhou, P.; Zhou, B. Nanoscale 2021, 13, 16207.
Outlines

/