Article

Study on the Electronic Structure and Optical Properties of Two-dimensional Monolayer MoSi2X4 (X=N, P, As)

  • Xue Gong ,
  • Xinguo Ma ,
  • Fengda Wan ,
  • Wangyang Duan ,
  • Xiaoling Yang ,
  • Jinrong Zhu
Expand
  • a School of Chip Industry, Hubei University of Technology, Wuhan 430068
    b Hubei Engineering Technology Research Center of Energy Photoelectric Device and System, Wuhan 430068

Received date: 2021-11-24

  Online published: 2022-02-08

Supported by

National Natural Science Foundation of China(51472081)

Abstract

Two-dimensional systems have served as potential materials in the generation of clean energy and energy storage, which are attributed to their particular advantages in photovoltaic, photocatalytic and electrochemical fields. Recently, the two-dimensional monolayer MoSi2N4 has been successfully fabricated. Motivated by these recent experimental results, herein the structural stability, electronic structures and optical properties of monolayer MoSi2X4 (X=N, P, As) using the method of plane-wave ultrasoft pseudopotentials were investigated. Six crystal structures were constructed based on the monolayer MoSi2N4 isomers M1 and M2. The phonon spectra did not show negative frequency vibration mode in the entire Brillouin region, indicating good dynamic stability. By analyzing the density of states, it can be known that the top of the valence band and the bottom of the conduction band of the six crystal structures are mainly contributed by MoX2 (X=N, P, As) orbitals. Energy band structures and effective masses show that the monolayer MoSi2N4 exhibits the widest indirect band gap and the highest carrier mobility among the six crystal structures. The band edge potentials show that the monolayer MoSi2N4 band edge potentials are M1: –0.368, 1.416 V and M2: –0.227, 1.837 V, respectively. Compared with MoSi2P4 and MoSi2As4, the monolayer MoSi2N4 has a more negative potential of the conduction band edge and a more positive potential of the valence band edge, indicating that it is the most suitable material for photocatalysts among the six crystal structures. Meanwhile, the optical absorption spectrum shows that the optical absorption of monolayer MoSi2N4 exhibits excellent optical absorption ability in visible and ultraviolet wavelengths, indicating that it has a potential application prospect in the field of visible photocatalysis. The results provide theoretical guidance on the application of monolayer MoSi2N4, for further research in the field of photocatalytic hydrolysis.

Cite this article

Xue Gong , Xinguo Ma , Fengda Wan , Wangyang Duan , Xiaoling Yang , Jinrong Zhu . Study on the Electronic Structure and Optical Properties of Two-dimensional Monolayer MoSi2X4 (X=N, P, As)[J]. Acta Chimica Sinica, 2022 , 80(4) : 510 -516 . DOI: 10.6023/A21110533

References

[1]
Muñoz, V.; Casado, C.; Suárez, S.; Sánchez, B.; Marugán, J. Catal. Today 2019, 326, 82.
[2]
Mo, J. H.; Zhang, Y. P.; Xu, Q. J.; Lamson, J. J.; Zhao, R. Y. Atmos. Environ. 2009, 43, 2229.
[3]
Wang, S. B.; Ang, H. M.; Tade, M. O. Environ. Int. 2007, 33, 694.
[4]
Chen, Q.; Kuang, Q.; Xie, Z. X. Acta Chim. Sinica 2021, 79, 10. (in Chinese)
[4]
(陈钱, 匡勤, 谢兆雄, 化学学报, 2021, 79, 10.)
[5]
Wang, R. Z.; Zou, Y. J.; Hong, S.; Xu, M. K.; Ling, L. Acta Chim. Sinica 2021, 79, 932. (in Chinese)
[5]
(王瑞兆, 邹云杰, 洪晟, 徐铭楷, 凌岚, 化学学报, 2021, 79, 932.)
[6]
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
[7]
Liu, H.; Li, J. Z.; Li, P.; Zhang, G. Z.; Xu, X.; Zhang, H.; Qiu, L. F.; Qi, H.; Duo, S. W. Acta Chim. Sinica 2021, 79, 1293. (in Chinese)
[7]
(刘欢, 李京哲, 李平, 张广智, 徐迅, 张豪, 邱灵芳, 齐晖, 多树旺, 化学学报, 2021, 79, 1293.)
[8]
Karlicky, F.; Kasibhatta, K. R. D.; Otyepka, M.; Zboril, R. ACS Nano 2013, 7, 6434.
[9]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
[10]
Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490, 192.
[11]
Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706.
[12]
Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.
[13]
Niu, P.; Zhang, L.; Liu, G.; Cheng, H. M. Adv. Funct. Mater. 2012, 22, 4763.
[14]
Zhou, L.; Xia, T. Y.; Cao, T. Q.; Wang, L. R.; Chen, Y. S.; Li, S. F.; Wang, R. M.; Guo, H. Z. J. Alloys Compd. 2020, 818, 152909.
[15]
Ye, G. L.; Gong, Y. J.; Lin, J. H.; Li, B.; He, Y. M.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Nano Lett. 2016, 16, 1097.
[16]
Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. J. Am. Chem. Soc. 2008, 130, 7176.
[17]
Laursen, A. B.; Kegnæs, S.; Dahla, S.; Chorkendorff, I. Energy Environ. Sci. 2012, 5, 5577.
[18]
Li, Y. G.; Li, Y. L.; Araujo, C. M.; Luo, W.; Ahuja, R. Catal. Sci. Technol. 2013, 3, 2214.
[19]
Quinn, M. D. J.; Ho, N. H.; Notley, S. M. ACS Appl. Mater. Interfaces 2013, 5, 12751.
[20]
Hong, Y. L.; Liu, Z. B.; Wang, L.; Zhou, T. Y.; Ma, W.; Xu, C.; Feng, S.; Chen, L.; Chen, M. L.; Sun, D. M.; Chen, X. Q.; Cheng, H. M.; Ren, W. C. Science 2020, 369, 670.
[21]
Bafekry, A.; Faraji, M.; Hoat, D. M.; Fadlallab, M. M.; Shahrokhi, M.; Shojaei, F.; Gogova, D.; Ghergherehchi, M. J. Phys. D: Appl. Phys. 2021, 54, 155303.
[22]
Novoselov, K. S.; Ge, Q.; Daria, V. A. Natl. Sci. Rev. 2020, 7, 559.
[23]
Li, Q. F.; Zhou, W. X.; Wan, X. G.; Zhou, J. Phys. E (Amsterdam, Neth.) 2021, 131, 114753.
[24]
Yu, J. H.; Zhou, J.; Wan, X. G.; Li, Q. F. New J. Phys. 2021, 23, 033005.
[25]
Cai, Y. Q.; Zhang, G.; Zhang, Y. W. J. Am. Chem. Soc. 2014, 136, 6269.
[26]
Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.
[27]
Kohn, W.; Sham, L. J. J. Phys. Rev. 1965, 140, 1133.
[28]
Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
[29]
Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condens. Matter 2002, 14, 2717.
[30]
Wang, H. Y. Ph.D. Dissertation, Zhongnan University, Changsha, 2008. (in Chinese)
[30]
(王焕友, 博士论文, 中南大学, 长沙, 2008.)
[31]
Yu, W. L.; Zhang, J. F.; Peng, T. Y. Appl. Catal., B 2016, 181, 220.
[32]
Ma, X. G.; Lu, B.; Li, D.; Shi, R.; Pan, C. S.; Zhu, Y. F. J. Phys. Chem. C 2011, 115, 4680.
[33]
Garg, R.; Dutta, N. K.; Choudhury, N. R. Nanomaterials 2014, 4, 267.
[34]
Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000, 85, 543.
[35]
Chun, W. J.; Ishikawa, A.; Fujisawa, H.; Takata, T.; Kondo, J. N.; Hara, M.; Kawai, M.; Matsumoto, Y.; Domen, K. J. Phys. Chem. B 2003, 107, 1798.
[36]
Hong, Y. L. Ph.D. Dissertation, University of Science and Technology of China, Hefei, 2020. (in Chinese)
[36]
(洪艺伦, 博士论文, 中国科学技术大学, 合肥, 2020.)
[37]
Peng, Q.; Wang, Z. Y.; Sa, B. S.; Wu, B.; Sun, Z. M. Sci. Rep. 2016, 6, 31994.
Outlines

/