Review

Research Progress of Red Thermally Activated Delayed Fluorescent Materials Based on Quinoxaline

  • Lu Zhou ,
  • Jia-Xiong Chen ,
  • Shaomin Ji ,
  • Wen-Cheng Chen ,
  • Yanping Huo
Expand
  • School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006

Received date: 2021-12-27

  Online published: 2022-02-08

Supported by

National Natural Science Foundation of China(52003058); National Natural Science Foundation of China(U2001222); National Natural Science Foundation of China(21975053); National Natural Science Foundation of China(21975055); National Natural Science Foundation of China(52003059); Guangdong Basic and Applied Basic Research Foundation(2019B1515120023); Guangdong Basic and Applied Basic Research Foundation(2019B1515120035); Guangdong Basic and Applied Basic Research Foundation(2021A1515010607); Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates(2019-kllma-06)

Abstract

Red emitter is one of the three primary materials for display, which is widely used in full-color display, biosensing and photodynamic therapy due to the advantages of small emission energy, strong penetrating ability and low background fluorescence interference. At present, the main bottlenecks for the development of red emitters are as follows. (1) The narrow energy gaps of red emitters often lead to serious non-radiative transition and low quantum efficiency. (2) The largely conjugated structure of red emitters results in strong π-π stacking for emission quenching. (3) Molecular design requires greater conjugation, which is difficult in molecular synthesis. Red thermally activated delayed fluorescence (TADF) materials, as a new type of red emitters, can use triplet excitons to release fluorescence through reverse intersystem crossing process, which greatly improves the quantum efficiency. Therefore, red TADF materials have become a hot topic in recent years. Because of the structural advantages, quinoxaline and its derivative are promising building blocks for the construction of red TADF emitters. The research progress of the quinoxaline-based red TADF materials in recent years is summarized, the influence of molecular structure on the properties of materials is discussed, and the prospect is also provided.

Cite this article

Lu Zhou , Jia-Xiong Chen , Shaomin Ji , Wen-Cheng Chen , Yanping Huo . Research Progress of Red Thermally Activated Delayed Fluorescent Materials Based on Quinoxaline[J]. Acta Chimica Sinica, 2022 , 80(3) : 359 -372 . DOI: 10.6023/A21120587

References

[1]
Forrest, S. R. Nature 2004, 428, 911.
[2]
Luo, J.; Xie, G.; Gong, S.; Chen, T.; Yang, C. Chem. Commun. 2016, 52, 2292.
[3]
Wong, M. Y.; Zysman-Colman, E. Adv. Mater. 2017, 29, 1605444.
[4]
Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J. M.; Brase, S. Adv. Mater. 2021, 33, 2005630.
[5]
Cao, H.; Li, B.; Wan, J.; Yu, T.; Xie, L.; Sun, C.; Liu, Y.; Wang, J.; Huang, W. Acta Chim. Sinica 2020, 78, 680. (in Chinese)
[5]
曹洪涛, 李波, 万俊, 余涛, 解令海, 孙辰, 刘玉玉, 王锦, 黄维, 化学学报, 2020, 78, 680.)
[6]
Liang, Z.-P.; Tang, R.; Qiu, Y.-C.; Wang, Y.; Lu, H.; Wu, Z.-G. Acta Chim. Sinica 2021, 79, 1401. (in Chinese)
[6]
(梁志鹏, 唐瑞, 邱雨晨, 王阳, 陆洪彬, 吴正光, 化学学报, 2021, 79, 1401.)
[7]
Fang, F.; Zhu, L.; Li, M.; Song, Y.; Sun, M.; Zhao, D.; Zhang, J. Adv. Sci. 2021, 8, 2102970.
[8]
Fang, F.; Yuan, Y.; Wan, Y.; Li, J.; Song, Y.; Chen, W. C.; Zhao, D.; Chi, Y.; Li, M.; Lee, C. S. Small 2022, 18, 2106215.
[9]
Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.
[10]
Leung, M.-K.; Chang, C.-C.; Wu, M.-H.; Chuang, K.-H.; Lee, J.-H.; Shieh, S.-J.; Lin, S.-C.; Chiu, C.-F. Org. Lett. 2006, 8, 2623.
[11]
Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.
[12]
Qiu, Y.; Wei, P.; Zhang, D. Q.; Qiao, J.; Duan, L.; Li, Y. K.; Gao, Y. D.; Wang, L. D. Adv. Mater. 2006, 18, 1607.
[13]
Su, S.-J.; Gonmori, E.; Sasabe, H.; Kido, J. Adv. Mater. 2008, 20, 4189.
[14]
Tan, J.; Huo, Y.; Cai, N.; Ji, S.; Li, Z.; Zhang, L. Chin. J. Org. Chem. 2017, 37, 2457. (in Chinese)
[14]
(谭继华, 霍延平, 蔡宁, 籍少敏, 李宗植, 张力, 有机化学, 2017, 37, 2457.)
[15]
Zhou, T.; Qian, Y.; Wang, H.; Feng, Q.; Xie, L.; Huang, W. Acta Chim. Sinica 2021, 79, 557. (in Chinese)
[15]
(周涛, 钱越, 王宏健, 冯全友, 解令海, 黄维, 化学学报, 2021, 79, 557.)
[16]
Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
[17]
Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Adv. Mater. 2009, 21, 4802.
[18]
Chen, X. K.; Tsuchiya, Y.; Ishikawa, Y.; Zhong, C.; Adachi, C.; Bredas, J. L. Adv. Mater. 2017, 29, 1702767.
[19]
Ohsawa, T.; Sasabe, H.; Watanabe, T.; Nakao, K.; Komatsu, R.; Hayashi, Y.; Hayasaka, Y.; Kido, J. Adv. Opt. Mater. 2019, 7, 1801282.
[20]
Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.
[21]
El-Sayed, M. A. J. Chem. Phys. 1963, 38, 2834.
[22]
Zhang, Q.; Kuwabara, H.; Potscavage, W. J. Jr.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C. J. Am. Chem. Soc. 2014, 136, 18070.
[23]
Zeng, W.; Zhou, T.; Ning, W.; Zhong, C.; He, J.; Gong, S.; Xie, G.; Yang, C. Adv. Mater. 2019, 31, 1901404.
[24]
Zhao, J.; Yang, Z.; Chen, X.; Xie, Z.; Liu, T.; Chi, Z.; Yang, Z.; Zhang, Y.; Aldred, M. P.; Chi, Z. J. Mater. Chem. C 2018, 6, 4257.
[25]
Chen, S.; Dai, J.; Zhou, K.; Luo, Y.; Su, S.; Pu, X.; Huang, Y.; Lu, Z. Acta Chim. Sinica 2017, 75, 367 (in Chinese)
[25]
(陈仕琦, 代军, 周凯峰, 罗艳菊, 苏仕健, 蒲雪梅, 黄艳, 卢志云, 化学学报, 2017, 75, 367.)
[26]
Lin, T. A.; Chatterjee, T.; Tsai, W. L.; Lee, W. K.; Wu, M. J.; Jiao, M.; Pan, K. C.; Yi, C. L.; Chung, C. L.; Wong, K. T.; Wu, C. C. Adv. Mater. 2016, 28, 6976.
[27]
Zeng, W.; Lai, H. Y.; Lee, W. K.; Jiao, M.; Shiu, Y. J.; Zhong, C.; Gong, S.; Zhou, T.; Xie, G.; Sarma, M.; Wong, K. T.; Wu, C. C.; Yang, C. Adv. Mater. 2018, 30, 1704961.
[28]
Wu, T.-L.; Huang, M.-J.; Lin, C.-C.; Huang, P.-Y.; Chou, T.-Y.; Chen-Cheng, R.-W.; Lin, H.-W.; Liu, R.-S.; Cheng, C.-H. Nat. Photonics 2018, 12, 235.
[29]
Deol, H.; Singh, G.; Kumar, M.; Bhalla, V. J. Org. Chem. 2020, 85, 11080.
[30]
Hogan, D. T.; Gelfand, B. S.; Spasyuk, D. M.; Sutherland, T. C. Mater. Chem. Front. 2020, 4, 268.
[31]
Oliveira, P. F. M.; Haruta, N.; Chamayou, A.; Guidetti, B.; Baltas, M.; Tanaka, K.; Sato, T.; Baron, M. Tetrahedron 2017, 73, 2305.
[32]
Hussain, H.; Specht, S.; Sarite, S. R.; Saeftel, M.; Hoerauf, A.; Schulz, B.; Krohn, K. J. Med. Chem. 2011, 54, 4913.
[33]
Zhang, Y.; Zhang, D.; Cai, M.; Li, Y.; Zhang, D.; Qiu, Y.; Duan, L. Nanotechnology 2016, 27, 094001.
[34]
Wang, S.; Yan, X.; Cheng, Z.; Zhang, H.; Liu, Y.; Wang, Y. Angew. Chem., Int. Ed. 2015, 54, 13068.
[35]
Wang, S.; Cheng, Z.; Song, X.; Yan, X.; Ye, K.; Liu, Y.; Yang, G.; Wang, Y. ACS Appl. Mater. Interfaces 2017, 9, 9892.
[36]
Furue, R.; Matsuo, K.; Ashikari, Y.; Ooka, H.; Amanokura, N.; Yasuda, T. Adv. Opt. Mater. 2018, 6, 1701147.
[37]
Wang, S.; Miao, Y.; Yan, X.; Ye, K.; Wang, Y. J. Mater. Chem. C 2018, 6, 6698.
[38]
Xie, F. M.; Wu, P.; Zou, S. J.; Li, Y. Q.; Cheng, T.; Xie, M.; Tang, J. X.; Zhao, X. Adv. Electron. Mater. 2019, 6, 1900843.
[39]
Zhang, Y. L.; Ran, Q.; Wang, Q.; Liu, Y.; Hanisch, C.; Reineke, S.; Fan, J.; Liao, L. S. Adv. Mater. 2019, 31, 1902368.
[40]
Balijapalli, U.; Nagata, R.; Yamada, N.; Nakanotani, H.; Tanaka, M.; D'Aleo, A.; Placide, V.; Mamada, M.; Tsuchiya, Y.; Adachi, C. Angew. Chem., Int. Ed. 2021, 60, 8477.
[41]
Liu, Y.; Chen, Y.; Li, H.; Wang, S.; Wu, X.; Tong, H.; Wang, L. ACS Appl. Mater. Interfaces 2020, 12, 30652.
[42]
Chen, J. X.; Wang, K.; Zheng, C. J.; Zhang, M.; Shi, Y. Z.; Tao, S. L.; Lin, H.; Liu, W.; Tao, W. W.; Ou, X. M.; Zhang, X. H. Adv. Sci. 2018, 5, 1800436.
[43]
Chen, J. X.; Tao, W. W.; Chen, W. C.; Xiao, Y. F.; Wang, K.; Cao, C.; Yu, J.; Li, S.; Geng, F. X.; Adachi, C.; Lee, C. S.; Zhang, X. H. Angew. Chem., Int. Ed. 2019, 58, 14660.
[44]
Chen, J. X.; Xiao, Y. F.; Wang, K.; Sun, D.; Fan, X. C.; Zhang, X.; Zhang, M.; Shi, Y. Z.; Yu, J.; Geng, F. X.; Lee, C. S.; Zhang, X. H. Angew. Chem., Int. Ed. 2021, 60, 2478.
[45]
Yuan, Y.; Hu, Y.; Zhang, Y.-X.; Lin, J.-D.; Wang, Y.-K.; Jiang, Z.-Q.; Liao, L.-S.; Lee, S.-T. Adv. Funct. Mater. 2017, 27, 1700986.
[46]
Yu, Y. J.; Hu, Y.; Yang, S. Y.; Luo, W.; Yuan, Y.; Peng, C. C.; Liu, J. F.; Khan, A.; Jiang, Z. Q.; Liao, L. S. Angew. Chem., Int. Ed. 2020, 59, 21578.
[47]
Xue, J.; Liang, Q.; Wang, R.; Hou, J.; Li, W.; Peng, Q.; Shuai, Z.; Qiao, J. Adv. Mater. 2019, 31, 1808242.
[48]
Gong, X.; Li, P.; Huang, Y. H.; Wang, C. Y.; Lu, C. H.; Lee, W. K.; Zhong, C.; Chen, Z.; Ning, W.; Wu, C. C.; Gong, S.; Yang, C. Adv. Funct. Mater. 2020, 30, 1908839.
[49]
Gong, X.; Lu, C.-H.; Lee, W.-K.; Li, P.; Huang, Y.-H.; Chen, Z.; Zhan, L.; Wu, C.-C.; Gong, S.; Yang, C. Chem. Eng. J. 2021, 405, 126663.
[50]
Hu, X.; Zhong, C.; Li, X.; Jia, X.; Wei, Y.; Xie, L. Acta Chim. Sinica 2021, 79, 953. (in Chinese)
[50]
(胡鑫明, 钟春晓, 李晓艳, 贾雄, 魏颖, 解令海, 化学学报, 2021, 79, 953.)
[51]
Yuan, Y.; Chen, J.-X.; Lu, F.; Tong, Q.-X.; Yang, Q.-D.; Mo, H.-W.; Ng, T.-W.; Wong, F.-L.; Guo, Z.-Q.; Ye, J.; Chen, Z.; Zhang, X.-H.; Lee, C.-S. Chem. Mater. 2013, 25, 4957.
[52]
Yuan, Y.; Chen, J.-X.; Chen, W.-C.; Ni, S.-F.; Wei, H.-X.; Ye, J.; Wong, F.-L.; Zhou, Z.-W.; Tong, Q.-X.; Lee, C.-S. Org. Electron. 2015, 18, 61.
[53]
Cai, Z.; Wu, X.; Liu, H.; Guo, J.; Yang, D.; Ma, D.; Zhao, Z.; Tang, B. Z. Angew. Chem., Int. Ed. 2021, 60, 23635.
[54]
Zhao, B.; Wang, H.; Han, C.; Ma, P.; Li, Z.; Chang, P.; Xu, H. Angew. Chem., Int. Ed. 2020, 59, 19042.
[55]
Yu, H.; Song, X.; Xie, N.; Wang, J.; Li, C.; Wang, Y. Adv. Funct. Mater. 2020, 31, 2007511.
[56]
Li, C.; Duan, R.; Liang, B.; Han, G.; Wang, S.; Ye, K.; Liu, Y.; Yi, Y.; Wang, Y. Angew. Chem., nt. Ed. 2017, 56, 11525.
[57]
Li, Z.; Yang, D.; Han, C.; Zhao, B.; Wang, H.; Man, Y.; Ma, P.; Chang, P.; Ma, D.; Xu, H. Angew. Chem., nt. Ed. 2021, 60, 14846.
[58]
Yang, T.; Liang, B.; Cheng, Z.; Li, C.; Lu, G.; Wang, Y. J. Phys. Chem. C 2019, 123, 18585.
[59]
Yang, T.; Cheng, Z.; Li, Z.; Liang, J.; Xu, Y.; Li, C.; Wang, Y. Adv. Funct. Mater. 2020, 30, 2002681.
Outlines

/