Account

Research on Key Materials and Devices of Organic Light-emitting Transistors

  • Haikuo Gao ,
  • Zhagen Miao ,
  • Wenping Hu ,
  • Huanli Dong
Expand
  • a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    b Shandong Engineering Research Center of Aeronautical Materials and Devices, College of Aeronautical Engineering, Binzhou University, Binzhou 256600, China
    c Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering, School of Sciences, Tianjin University, Tianjin 300072, China
    d Haihe Laboratory of Green Creation and Manufacturing of Materials, Tianjin 300072, China
    e Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
    f University of Chinese Academy of Sciences, Beijing 100049, China
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
* E-mail: ; Tel.: 010-62622069; Fax: 010-62622069

Received date: 2022-01-05

  Online published: 2022-02-10

Supported by

National Science Fund for Distinguished Young Scholars(51725304); Key special topics of Nanotechnology of National key R & D plan(2017YFA0204503); National Molecular Science Center Project(BNLMS-CXXM-202012); Class B special cultivation project of Chinese Academy of science and technology(XDPB13)

Abstract

Organic light-emitting transistor (OLET) is a kind of revolutionary miniaturized optoelectronic device which integrates the functions of an organic field-effect transistor and an organic light-emitting diode in a single device. This unique integrated architecture of OLET makes it show great potential for studies of fundamental properties of organic materials, applications in fields of novel organic flexible display/lighting technology, organic electrically-pumped lasers as well as on-chip optoelectronic systems. To realize the full potential of these technologies, the development of key materials and optimization of device fabrication techniques including device structures and processing conditions are highly required. Based on the comprehensive study of the development and basic scientific problems in the OLET field, in the past five years, the authors' research group and collaborators carried out systematical exploratory researches with focuses on the development of high mobility emissive organic semiconductors and construction of high performance OLETs with line- and area-feature emission. Up to now, a series of achievements have been obtained. For instance, we developed a series of anthracene- and fluorene-based high mobility emissive organic semiconductors from the origin of molecular design innovation, which overcomes the science bottleneck of impossibility for integrating high charge carrier mobility and strong emission in the same molecule. Furthermore, this molecular design concept also shows a certain feasibility for the development of other small molecular systems and high mobility emissive conjugated polymers. Moreover, with the mind of integrating the advantages of area-emission of vertical OLET and good gate-tunability and stability of planar OLET, we propose a new area-emission planar OLET architecture, which exhibits a large aperture ratio of over 80% due to the arbitrary tunability of device structure. These preliminary experimental researches and results will provide valuable guidelines for future research of OLETs and their related fields.

Cite this article

Haikuo Gao , Zhagen Miao , Wenping Hu , Huanli Dong . Research on Key Materials and Devices of Organic Light-emitting Transistors[J]. Acta Chimica Sinica, 2022 , 80(3) : 327 -339 . DOI: 10.6023/A22010006

References

[1]
Qin, Z.-S.; Gao, H.-K.; Liu, J.-Y.; Zhou, K.; Li, J.; Dang, Y.-Y.; Huang, L.; Deng, H.-X.; Zhang, X.-T.; Dong, H.-L.; Hu, W.-P. Adv. Mater. 2021, 33, 2007149.
[2]
Muccini, M. Nat. Commun. 2006, 5, 605.
[3]
Kurosaka, Y.; Iwahashi, S.; Liang, Y.; Sakai, K.; Miyai, E.; Kunishi, W.; Ohnishi, D.; Noda, S. Nat. Photonics, 2010, 4, 447.
[4]
Hepp, A.; Heil, H.; Weise, W.; Ahles, M.; Schmechel, R.; von Seggern, H. Phys. Rev. Lett. 2003, 91, 157406.
[5]
Dong, H.-L,; Hu, W.-P. Acc. Chem. Res. 2016, 49, 2435.
[6]
Xu, X.-M.; Yao, Y.-F.; Shan, B.-W.; Gu, X.; Liu, D.-Q.; Liu, J.-Y.; Xu, J.-B.; Zhao, N.; Hu, W.-P.; Miao, Q. Adv. Mater. 2016, 28, 5276.
[7]
Yao, Y.-F.; Dong, H.-L.; Liu, F.; Russell, T. P.; Hu, W.-P. Adv. Mater. 2017, 29.
[8]
Wang, C.; Zhang, X.-T.; Dong, H.-L.; Chen, X.-D.; Hu, W.-P. Adv. Energy Mater. 2020, 10, 2000955.
[9]
Liu, J.; Jiang, L.; Hu, W.-P.; Liu, Y.-Q.; Zhu, D.-B. Sci. China Chem. 2019, 62, 313.
[10]
Zaumseil, J.; Friend, R. H.; Sirringhaus, H. Nat. Mater. 2006, 5, 69.
[11]
Qin, Z.-S; Gao, H.-K.; Liu, J.-Y.; Zhou, K.; Li, J.; Dang, Y.-Y.; Huang, L.; Deng, H.-X.; Zhang, X.-T.; Dong, H.-L; Hu, W.-P. Adv. Mater. 2019, 31, 1903175.
[12]
Gwinner, M. C.; Khodabakhsh, S.; Song, M. H.; Schweizer, H.; Giessen, H.; Sirringhaus, H. Adv. Funct. Mater. 2009, 19, 1360.
[13]
Guo, L.-D.; Qin, Y.; Gu, X.-R.; Zhu, X.-W.; Zhou, Q.; Sun, X.-N. Front. Chem. 2019, 7, 428.
[14]
Wang, D.-Y.; Liu, L.-Y; Gao, X.-K.; Di, C.-A.; Zhu, D.-B. CCS Chem. 2021, 3, 2212.
[15]
Ding, S.-S.; Tian, Y.; Hu, W.-P. Nano Res. 2021, 14, 3653.
[16]
Capelli, R.; Toffanin, S.; Generali, G.; Usta, H.; Facchetti, A.; Muccini, M. Nat. Mater. 2010, 9, 496.
[17]
McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim, D. Y.; So, F.; Rinzler, A. G. Science, 2011, 332, 570.
[18]
Yamao, T.; Terasaki, K.; Shimizu, Y.; Hotta, S. J. Nanosci. Nanotechnol. 2010, 10, 1017.
[19]
Verlaak, S.; Cheyns, D.; Debucquoy, M.; Arkhipov, V.; Heremans, P. Appl. Phys. Lett. 2004, 85, 2405.
[20]
Samuel, I. D.; Turnbull, G. A. Chem. Rev. 2007, 107, 1272.
[21]
Yap, B. K.; Xia, R.; Campoy-Quiles, M.; Stavrinou, P. N.; Bradley, D. D. Nat. Mater. 2008, 7, 376.
[22]
Sandanayaka, A. S. D.; Matsushima, T.; Bencheikh, F.; Terakawa, S.; Potscavage, W. J.; Qin, C.-J.; Fujihara, T.; Goushi, K.; Ribierre, J.-C.; Adachi, C. Appl. Phys. Express, 2019, 12, 061010.
[23]
Wang, K.; Zhao, Y.-S. Chem, 2021, 7, 3221.
[24]
Zhao, G.-Y.; Dong, H.-L.; Liao, Q.; Jiang, J.; Luo, Y.; Fu, H.-B.; Hu, W.-P. Nat. Commun. 2018, 9, 4790.
[25]
Lu, S.-Y.; Fang, H.-H.; Feng, J.; Xia, H.; Zhang, T.-Q.; Chen, Q.-D.; Sun, H.-B. J. Lightwave Technol. 2014, 32, 2415.
[26]
Hu, Y.-W.; Yu, M.-J.; Zhu, D.; Sinclair, N.; Shams-Ansari, A.; Shao, L.-B.; Holzgrafe, J.; Puma, E.; Zhang, M.; Loncar, M. Nature, 2021, 599, 587.
[27]
Ambrosetti, A.; Ferri, N.; DiStasio, R. A.,Jr.; Tkatchenko, A. Science 2016, 351, 1171.
[28]
Gao, C.; Wong, W. W. H.; Qin, Z.-S.; Lo, S. C.; Namdas, E. B.; Dong, H.-L.; Hu, W.-P. Adv. Mater. 2021, 33, 2100704.
[29]
Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Appl. Phys. Lett. 2007, 90, 102120.
[30]
Giri, G.; Verploegen, E.; Mannsfeld, S. C.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z.-N. Nature, 2011, 480, 504.
[31]
Dong, H.-L.; Fu, X.-L.; Liu, J.; Wang, Z.-R.; Hu, W.-P. Adv. Mater. 2013, 25, 6158.
[32]
Ou, Q.; Peng, Q.; Shuai, Z.-G. Nat. Commun. 2020, 11, 4485.
[33]
Yap, B. K.; Xia, R.-D.; Campoy-Quiles, M.; Stavrinou, P. N.; Bradley, D. D. Nat. Mater. 2008, 7, 376.
[34]
Chan, C.-Y.; Tanaka, M.; Lee, Y.-T.; Wong, Y.-W.; Nakanotani, H.; Hatakeyama, T.; Adachi, C. Nat. Photonics, 2021, 15, 203.
[35]
Sawabe, K.; Imakawa, M.; Nakano, M.; Yamao, T.; Hotta, S.; Iwasa, Y.; Takenobu, T. Adv. Mater. 2012, 24, 6141.
[36]
Liu, J.; Dong, H.-L.; Wang, Z.-R.; Ji, D.-Y.; Cheng, C.-L.; Geng, H.; Zhang, H.-T.; Zhen, Y.-G.; Jiang, L.; Fu, H.-B.; Bo, Z.-S.; Chen, W.; Shuai, Z.-G.; Hu, W.-P. Chem. Commun. 2015, 51, 11777.
[37]
Liu, J.; Zhang, H.-T.; Dong, H.-L.; Meng, L.-Q.; Jiang, L.-F.; Jiang, L.; Wang, Y.; Yu, J.-S.; Sun, Y.-M.; Hu, W.-P.; Heeger, A. J. Nat. Commun. 2015, 6, 10032.
[38]
Sun, Q.; Ren, J.-J.; Jiang, T.; Peng, Q.; Ou, Q.; Shuai, Z.-G. Nano Lett, 2021, 21, 5394.
[39]
Li, J.; Zhou, K.; Liu, J.; Zhen, Y.-G.; Liu, L.; Zhang, J.-D.; Dong, H.-L.; Zhang, X.-T.; Jiang, L.; Hu, W.-P. J. Am. Chem. Soc. 2017, 139, 17261.
[40]
Liu, J.; Zhu, W.-G.; Zhou, K.; Wang, Z.-R.; Zou, Y.; Meng, Q.; Li, J.; Zhen, Y.-G.; Hu, W.-P. J. Mater. Chem. C, 2016, 4, 3621.
[41]
Liu, J.; Meng, L.-Q.; Zhu, W.-G.; Zhang, C.-C.; Zhang, H.-T.; Yao, Y.-F.; Wang, Z.-R.; He, P.; Zhang, X.-T.; Wang, Y.; Zhen, Y.-G.; Dong, H.-L.; Yi, Y.-P.; Hu, W.-P. J. Mater. Chem. C, 2015, 3, 3068.
[42]
Tao, J.-W.; Liu, D.; Jing, J.-B.; Dong, H.-L.; Liu, L.-J.; Xu, B.; Tian, W.-J. Adv. Mater. 2021, 33, 2105466.
[43]
Xie, Z.; Liu, D.; Zhang, Y.-H.; Liu, Q.-Q.; Dong, H.-L.; Hu, W.-P. Chem. J. Chin. Univ. 2019, 41, 1179. (in Chinese)
[43]
(谢子仪, 刘单, 张逸寒, 刘情情, 董焕丽, 胡文平, 高等学校化学学报, 2019, 41, 1179.)
[44]
Ma, S.-Q.; Zhou, K.; Hu, M.-X.; Li, Q.-Y.; Liu, Y.-J.; Zhang, H.-T.; Jing, J.-B.; Dong, H.-L.; Xu, B.; Hu, W.-P.; Tian, W.-J. Adv. Funct. Mater. 2018, 28, 1802454.
[45]
Liu, Q.-Q.; Zhang, Y.-H.; Gao, C.; Wang, T.-Y.; Hu, W.-P.; Dong, H.-L. Acta Chim. Sinica 2020, 78, 945. (in Chinese)
[45]
(刘情情, 张逸寒, 高灿, 王天禹, 胡文平, 董焕丽, 化学学报, 2020, 78, 945.)
[46]
Zhang, Y.-H.; Ye, J.; Liu, Z.-Y.; Liu, Q.-Q.; Guo, X.-F.; Dang, Y.-F.; Zhang, J.-Q.; Wei, Z.-X.; Wang, Z.-X.; Wang, Z.-H.; Dong, H.-L.; Hu, W.-P. J. Mater. Chem. C, 2020, 8, 10868.
[47]
Guo, X.-F.; Zhang, Y.-H.; Hu, Y.-X.; Yang, J.-X.; Li, Y.; Ni, Z.-J.; Dong, H.-L.; Hu, W.-P. Angew. Chem., Int. Ed. 2021, 60, 14902.
[48]
Liu, D.; Liao, Q.; Peng, Q.; Gao, H.-K.; Sun, Q.; De, J.-B.; Gao, C.; Miao, Z.-G.; Qin, Z.-S.; Yang, J.-X.; Fu, H.-B.; Shuai, Z.-G.; Dong, H.-L.; Hu, W.-P. Angew. Chem., Int. Ed. 2021, 60, 20274.
[49]
Liu, D.; De, J.-B.; Gao, H.-K.; Ma, S.-Q.; Ou, Q.; Li, S.; Qin, Z.-S.; Dong, H.-L.; Liao, Q.; Xu, B.; Peng, Q.; Shuai, Z.-G.; Tian, W.-J.; Fu, H.-B.; Zhang, X.-T.; Zhen, Y.-G.; Hu, W.-P. J. Am. Chem. Soc. 2020, 142, 6332.
[50]
Zhang, X.-T.; Dong, H.-L.; Hu, W.-P. Adv. Mater. 2018, 30.
[51]
Chen, S.-N.; Li, Z.; Qiao, Y.-L.; Song, Y.-L. J. J. Mater. Chem. C 2021, 9, 1126.
[52]
Lin, C.-C.; Peng, B.-Y.; Li, H.-Y. Chem. J. Chin. Univ. 2021, 42, 1672. (in Chinese)
[52]
(林城策, 彭博宇, 李寒莹, 高等学校化学学报, 2021, 42, 1672.)
[53]
Zhang, C.-C.; Zhang, F.-H.; Ding, L.; Ni, Z.-J.; Jiang, L.; Dong, H.-L.; Zhang, X.-T.; Li, R.-J.; Hu, W.-P. Chem. J. Chin. Univ. 2018, 39, 102. (in Chinese)
[53]
(张婵婵, 张方辉, 丁磊, 倪振杰, 江浪, 董焕丽, 张小涛, 李荣金, 胡文平, 高等学校化学学报, 2018, 39, 102.)
[54]
Wang, P.; Liu, D.; Wang, Y.-S.; Zhang, P.; Yu, P.-P.; Wang, M.-C.; Zhen, Y.-G.; Dong, H.-L.; Hu, W.-P. Chin. Chem. Lett. 2020, 31, 2909.
[55]
TKe, T.-H.; Gehlhaar, R.; Chen, C.-H.; Lin, J.-T.; Wu, C.-C.; Adachi, C. Appl. Phys. Lett. 2009, 95, 063303.
[56]
Hsu, B. B.; Seifter, J.; Takacs, C. J.; Zhong, C.; Tseng, H. R.; Samuel, I. D.; Namdas, E. B.; Bazan, G. C.; Huang, F.; Cao, Y.; Heeger, A. J. ACS Nano, 2013, 7, 2344.
[57]
Muhieddine, K.; Ullah, M.; Pal, B. N.; Burn, P.; Namdas, E. B. Adv. Mater. 2014, 26, 6410.
[58]
Walker, B.; Ullah, M.; Chae, G. J.; Burn, P. L.; Cho, S.; Kim, J. Y.; Namdas, E. B.; Seo, J. H. Appl. Phys. Lett. 2014, 105, 183302.
[59]
Cui, S.-B.; Hu, Y.-F.; Lou, Z.-D.; Yi, R.; Hou, Y.-B.; Teng, F. Org. Electron. 2015, 22, 51-55.
[60]
Wan, Y.-J.; Deng, J.; Wu, W.-L.; Zhou, J.-D.; Niu, Q.; Li, H.-Y.; Yu, H.-K.; Gu, C.; Ma, Y.-G. ACS Appl. Mater. Interfaces, 2020, 12, 43976.
[61]
Liu, L.-Q.; Cai, C.; Zhang, Z.-J; Zhang, S.-T.; Deng, J.; Yang, B.; Gu, C.; Ma, Y.-G. ACS Mater. Lett. 2021, 3, 428.
[62]
Nakamura, K.; Hata, T.; Yoshizawa, A.; Obata, K.; Endo, H.; Kudo, K. Appl. Phys. Lett. 2006, 89, 103525.
[63]
Liu, B.; McCarthy, M. A.; Yoon, Y.; Kim, D. Y.; Wu, Z.; So, F.; Holloway, P. H.; Reynolds, J. R.; Guo, J.; Rinzler, A. G. Adv. Mater. 2008, 20, 3605.
[64]
Nakamura, K.; Hata, T.; Yoshizawa, A.; Obata, K.; Endo, H.; Kudo, K. Jpn. J. Appl. Phys. 2008, 47, 1889.
[65]
Liu, J.-Y.; Zhou, K.; Liu, J.; Zhu, J.; Zhen, Y.-G.; Dong, H.-L.; Hu, W.-P. Adv. Mater. 2018, 30, 1803655.
[66]
Gao, H.-K.; Liu, J.-Y.; Qin, Z.-S.; Wang, T.-Y.; Gao, C.; Dong, H.-L.; Hu, W.-P. Nanoscale, 2020, 12, 18371.
[67]
Greenman, M.; Sheleg, G.; Keum, C. M.; Zucker, J.; Lussem, B.; Tessler, N. J. Appl. Phys. 2017, 121, 204503.
[68]
Gao, H.-K.; Miao, Z.-G.; Qin, Z.-S.; Yang, J.-X.; Wang, T.-Y.; Gao, C.; Dong, H.-L.; Hu, W.-P. Adv. Mater. 2021, 2108795.
Outlines

/