Bulk Single Crystal Growth of a Two-Dimensional Halide Perovskite Ferroelectric for Highly Polarized-Sensitive Photodetection※
Received date: 2021-12-31
Online published: 2022-02-11
Supported by
National Natural Science Foundation of China(21833010); National Natural Science Foundation of China(21921001); National Natural Science Foundation of China(22075285); National Natural Science Foundation of China(22125110); Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(ZDBS-LY-SLH024); Natural Science Foundation of Fujian Province(2020J01112); Strategic Priority Research Program of the Chinese Academy of Sciences(XDB20010200); Youth Innovation Promotion of Chinese Academy of Sciences(2020307); National Postdoctoral Program for Innovative Talents(BX2021315)
Low-dimensional semiconductors, especially recent emerging two-dimensional halide perovskites, have shown great potential in extensive optoelectronic applications due to their large structural anisotropy, unique quantum well effect and excellent semiconductor properties. Meanwhile, the bulk photovoltaic effect with a highly sensitive angle-resolved photoresponse arising from ferroelectric materials presents a promising approach for highly polarized-sensitive photodetection. Despite the blooming development of two-dimensional halide perovskite ferroelectric materials, it is a great challenge to grow bulk single crystals of two-dimensional halide perovskite ferroelectric, which restricts their further applications in polarized-sensitive optoelectronic devices. This work mainly focuses on the developing of low-dimensional halide perovskite ferroelectric crystals with excellent photoelectric response. Two-dimensional (2D) halide perovskite ferroelectric (iPA)2EA2Pb3I10 (iPA=isopentammonium, EA=ethylammonium) was synthesized by a solution method through the reaction of stoichiometric lead acetate, isoamine and ethylamine in concentrated aqueous hydroiodic acid. Meanwhile, high quality centimeter-size single crystals of ferroelectric (iPA)2EA2Pb3I10 with the max dimensions up to 15 mm×15 mm×3 mm have been grown via temperature cooling method. On the basis of grown bulk single crystals, further investigations on the crystal structure, optical properties measurements and electrical properties characterization were carried out. The photoelectric response performance and polarization photodetection performance of photoelectric detectors based on the compound ferroelectric single crystal assembly. The result indicated that the unique two-dimensional perovskite structure endows (iPA)2EA2Pb3I10 with strong optical anistropy, narrow bandgap (1.80 eV) and fascinating photoelectric features (on/off ratio=103). Strikingly, the fabricated photodetectors based on ferroelectric crystal (iPA)2EA2Pb3I10 manifest excellent photoelectric features, including large dichroism ratio (2.3), high responsibility (193 mA•W–1) and photodetectivity (7.0×1011 Jones), better than most photodetector based on intrinsic optical anisotropy of 2D materials. This work will be of great significance to lay a foundation for the exploring of multifunctional halide perovskites and points out the direction for bulk grown of highly anisotropic halide perovskite ferroelectric crystals and promotes their further applications in highly polarized-sensitive photodetection.
Fen Zhang , Xiaoqi Li , Shiguo Han , Fafa Wu , Xitao Liu , Zhihua Sun , Junhua Luo . Bulk Single Crystal Growth of a Two-Dimensional Halide Perovskite Ferroelectric for Highly Polarized-Sensitive Photodetection※[J]. Acta Chimica Sinica, 2022 , 80(3) : 237 -243 . DOI: 10.6023/A21120613
[1] | Yuan, H.-T.; Liu, X.-G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G.-J.; Hikita, Y.; Shen, Z.-X.; Zhang, S.-C.; Chen, X.-H.; Brongersma, M.; Hwang, H. Y.; Cui, Y. Nat. Nanotechnol. 2015, 10, 707. |
[2] | Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Nat. Nanotechnol. 2013, 8, 497. |
[3] | Liu, F.-C.; Zheng, S.-J.; He, X.-X.; Chaturvedi, A.; He, J.-F.; Chow, W. L.; Mion, T. R.; Wang, X.-L.; Zhou, J.-D.; Fu, Q.-D.; Fan, H.-J.; Tay, B. K.; Song, L.; He, R.-H.; Kloc, C.; Ajayan, P. M.; Liu, Z. Adv. Funct. Mater. 2016, 26, 1169. |
[4] | Wang, X.-T.; Li, Y.-T.; Huang, L.; Jiang, X.-W.; Jiang, L.; Dong, H.-L.; Wei, Z.-M.; Li, J.-B.; Hu, W.-P. J. Am. Chem. Soc. 2017, 139, 14976. |
[5] | Wang, K.-Y.; Jing, L.; Yao, Q.; Zhang, J.; Cheng, X.-H.; Yuan, Y.; Shang, C.-Y.; Ding, J.-X.; Zhou, T.-L.; Sun, H.-Q.; Zhang, W.-W.; Li, H.-P. J. Phys. Chem. Lett. 2021, 12, 1904. |
[6] | Lines, M. E.; Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, Oxford, 1977. |
[7] | Scott, J. F. Science 2007, 315, 954. |
[8] | Spaldin, N. A.; Cheong, S. W.; Ramesh, R. Phys. Today 2010, 63, 38. |
[9] | Garcia, V.; Bibes, M.; Bocher, L.; Valencia, S.; Kronast, F.; Crassous, A.; Moya, X.; Enouz-Vedrenne, S.; Gloter, A.; Imhoff, D.; Deranlot, C.; Mathur, N. D.; Fusil, S.; Bouzehouane, K.; Barthélémy, A. Science 2010, 327, 1106. |
[10] | Scott, J. F. Nat. Mater. 2007, 6, 256. |
[11] | Fridkin, V. M. Photoferroelectrics, Springer Science & Business Media, Moscow, 1979. |
[12] | Fridkin, V. M.; Grekov, A. A.; Rodin, A. I. Ferroelectrics 1982, 43, 99. |
[13] | Choi, T.; Lee, S.; Choi, Y. J.; Kiryukhin, V.; Cheong, S. W. Science 2009, 324, 63. |
[14] | Kreisel, J.; Alexe, M.; Thomas, P. A. Nat. Mater. 2012, 11, 260. |
[15] | Spanier, J. E.; Fridkin, V. M.; Rappe, A. M.; Akbashev, A. R.; Polemi, A.; Qi, Y.; Gu, Z.; Young, S. M.; Hawley, C. J.; Imbrenda, D.; Xiao, G.; Bennett-Jackson, A. L.; Johnson, C. L. Nat. Photonics 2016, 10, 611. |
[16] | Zhang, Y. J.; Ideue, T.; Onga, M.; Qin, F.; Suzuki, R.; Zak, A.; Tenne, R.; Smet, J. H.; Iwasa, Y. Nature 2019, 570, 349. |
[17] | Brody, P.; Crowne, F. J. Electron. Mater. 1975, 4, 955. |
[18] | Koch, W. T. H.; Munser, R.; Ruppel, W.; Wurfel, P. Solid State Commun. 1975, 17, 847. |
[19] | Belinicher, V.; Malinovskii, V.; Sturman, B. Sov. J. Exp. Theor. Phys. 1977, 46, 362. |
[20] | Fridkin, V. M.; Popov, B. N.; Kuznetzov, V. A.; Barsukova, M. L. Ferroelectrics 1978, 19, 109. |
[21] | Gunter, P. Ferroelectrics 1978, 22, 671. |
[22] | Krätzig, E.; Orlowski, R. Appl. Phys. 1978, 15, 133. |
[23] | Glass, A. M.; von der Linde, D.; Negran, T. J. Appl. Phys. Lett. 1974, 25, 233. |
[24] | Glass, A. M.; von der Linde, D.; Auston, D. H.; Negran, T. J. J. Electron. Mater. 1975, 4, 915. |
[25] | Liao, W.-Q.; Zhang, Y.; Hu, C.-L.; Mao, J.-G.; Ye, H.-Y.; Li, P.-F.; Huang, S. D.; Xiong, R.-G. Nat. Commun. 2015, 6, 7338. |
[26] | Li, L.-N.; Liu, X.-T.; Li, Y.-B.; Xu, Z.-Y.; Wu, Z.-Y.; Han, S.-G.; Tao, K.; Hong, M.-C.; Luo, J.-H.; Sun, Z.-H. J. Am. Chem. Soc. 2019, 141, 2623. |
[27] | Wang, J.-Q.; Liu, Y.; Han, S.-G.; Ma, Y.; Li, Y.-B.; Xu, Z.-Y.; Luo, J.-H.; Hong, M.-C.; Sun, Z.-H. Sci. Bull. 2021, 66, 158. |
[28] | Chen, X.-M.; Lu, W.-G.; Tang, J.-L.; Zhang, Y.-Y.; Wang, Y.-T.; Scholes, G. D.; Zhong, H.-Z. Nat. Photonics 2021, 15, 813. |
[29] | Li, J.-Y.; Han, Z.-Y.; Gu, Y.; Yu, D.-J.; Liu, J.-X.; Hu, D.-W.; Xu, X.-B.; Zeng, H.-B. Adv. Funct. Mater. 2020, 31, 2008684. |
[30] | Wang, Y.-L.; Chang, S.; Chen, X.-M.; Ren, Y.-D.; Shi, L.-F.; Liu, Y.-H.; Zhong, H.-Z. Chin. J. Chem. 2019, 37, 616. |
[31] | Han, S.-G.; Li, M.-F.; Liu, Y.; Guo, W.-Q.; Hong, M.-C.; Sun, Z.-H.; Luo, J.-H. Nat. Commun. 2021, 12, 284. |
[32] | Xu, H.-J.; Han, S.-G.; Sun, Z.-H.; Luo, J.-H. Acta Chim. Sinica 2021, 79, 23. (in Chinese) |
[32] | (徐豪杰, 韩世国, 孙志华, 罗军华, 化学学报, 2021, 79, 23.) |
[33] | Ding, J.-X.; Cheng, X.-H.; Jing, L.; Zhou, T.-L.; Zhao, Y.; Du, S.-J. ACS Appl. Mater. Inter. 2018, 10, 845. |
[34] | Chen, Z.-H.; Han, Z.-S.; Shi, W.; Cheng, P. Acta Chim. Sinica 2020, 78, 1336. (in Chinese) |
[34] | (陈中杭, 韩宗甦, 师唯, 程鹏, 化学学报, 2020, 78, 1336.) |
[35] | Ji, C.-M.; Dey, D.; Peng, Y.; Liu, X.-T.; Li, L.-N.; Luo, J.-H. Angew. Chem. Int. Ed. 2020, 59, 18933. |
[36] | Li, L.; Jin, L.; Zhou, Y.-X.; Li, J.-Z.; Ma, J.-Q.; Wang, S.; Li, W.-C.; Li, D.-H. Adv. Opt. Mater. 2019, 7, 1900988. |
[37] | Liu, Y.; Wu, Z.-Y.; Liu, X.-T.; Han, S.-G.; Li, Y.-B.; Yang, T.; Ma, Y.; Hong, M.-C.; Luo, J.-H.; Sun, Z.-H. Adv. Opt. Mater. 2019, 7, 1901049. |
/
〈 |
|
〉 |