Synthesis of Bis/triaza Crown Ethers and Study of Their Properties as Friction Modifiers※
Received date: 2021-12-17
Online published: 2022-02-15
Supported by
Youth Innovation Promotion Association, CAS(2019288); Shanghai Pudong New Area Science and Technology Development Fund(PKJ2019-C01); Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21021202)
The development of modern automobile industry and the increasingly strict environmental protection regulations continuously drive the development of automobile lubricating oil. Friction modifiers play an important role in improving the friction reduction and fuel economy of the engine oil. Organic molybdenum compounds are the most widely used friction modifiers, the metal elements of which will increase the thermal oxidation deposits, and further affect the ternary catalytic converter system. Additionally, the friction reduction performance will decrease with the oxidation of oil. In view of the problems existing in friction modifiers such as harmful elements, ash content and limited active adsorption sites, two bis/triaza crown ethers were designed and synthesized in this paper. Active nitrogen atoms and long-chain alkyl groups were introduced into the structure of crown ether to provide adsorption sites and oil solubility. UMT-tribolab and 3D profilometer were applied to study the friction-reducing and anti-wear properties of the synthesized azacrown ethers under boundary lubrication regime. The adsorption properties of additive molecules on metal surface were analyzed by using steel surface contact angle measurement. And the composition of lubrication film on metal friction pair surface was analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, in order to clarify the lubrication mechanism of the azacrown ethers. The results show that both bis/triaza crown ethers can effectively reduce the friction coefficient and wear rate of base oil. The triaza-crown ether containing pyridine structure unit shows superior tribological properties, which can reduce the friction coefficient and wear rates by up to 8.8% and 42%, respectively. It can be indicated from the mechanism analysis that azacrown ethers can be adsorbed on the surface of steel in varying degrees. Under the shear stress of friction pairs, the compounds adsorbed on the surface further undergo tribochemical reaction to form lubricating protective film. The lubricant layer with ferric oxide and carbon film will prevent the sliding surface from direct contact to improve tribology performance.
Wenjing Hu , Jiusheng Li . Synthesis of Bis/triaza Crown Ethers and Study of Their Properties as Friction Modifiers※[J]. Acta Chimica Sinica, 2022 , 80(3) : 310 -316 . DOI: 10.6023/A21120570
| [1] | Cyriac, F.; Tee, X. Y.; Poornachary, S. K.; Chow, P. S. Friction 2021, 9, 380. |
| [2] | Spikes, H. Tribol. Lett. 2015, 60, 5. |
| [3] | Holmberg, K.; Andersson, P.; Erdemir, A. Tribol. Int. 2012, 47, 221. |
| [4] | Wong, V. W.; Tung, S. C. Friction 2016, 4, 1. |
| [5] | Xu, D.; Wang, C.; Espejo, C.; Wang, J.; Neville, A.; Morina, A. Langmuir 2018, 34, 13523. |
| [6] | De Barros Bouchet, M. I.; Martin, J. M.; Oumahi, C.; Gorbatchev, O.; Afanasiev, P.; Geantet, C.; Iovine, R.; Thiebaut, B.; Heau, C. Tribol. Int. 2018, 119, 600. |
| [7] | Zhao, X.; Zhang, G.; Wang, L.; Xue, Q. Tribol. Lett. 2017, 65, 64. |
| [8] | Lundgren, S. M.; Eriksson, K.; Rossenaar, B. SAE Int. J. Fuels Lubr. 2015, 8, 27. |
| [9] | De Feo, M.; Minfray, C.; De Barros Bouchet, M. I.; Thiebaut, B.; Martin, J. M. RSC Adv. 2015, 5, 93786. |
| [10] | Shu, Z. Y.; Xia, Y. Q.; Ge, X. Y. Adv. Mater. Res. 2013, 645, 137. |
| [11] | Kotia, A.; Chowdary, K.; Srivastava, I.; Ghosh, S. K.; Ali, M. K. A. J. Mol. Liq. 2020, 310, 113200. |
| [12] | Guimarey, M. J. G.; Comunas, M. J. P.; Lopez, E. R.; Amigo, A.; Fernandez, J. J. Chem. Thermodyn. 2019, 131, 192. |
| [13] | Brittain, W. J.; Minko, S. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 3505. |
| [14] | Robinson, J. W.; Zhou, Y.; Qu, J.; Bays, J. T.; Cosimbescu, L. React. Funct. Polym. 2016, 109, 52. |
| [15] | Zhang, S. M.; Gao, Y. J.; Zhang, Z. J.; Dang, H. X.; Liu, W. M.; Xue, Q. J. Acta Chim. Sinica 2002, 60, 1497. (in Chinese) |
| [15] | (张晟卯, 高永建, 张治军, 党鸿辛, 刘维民, 薛群基, 化学学报, 2002, 60, 1497.) |
| [16] | Chen, W. X.; Xu, J. P.; Ma, X. C.; Xu, Z. D.; Chen, W. L.; Wang, J. G.; Cheng, D. H.; Xia, J. B.; Gan, H. Y.; Jin, Y. X. Acta Chim. Sinica 2002, 60, 1722. (in Chinese) |
| [16] | (陈卫祥, 涂江平, 马晓春, 徐铸德, 陈文录, 汪久根, 成旦红, 夏军保, 甘海洋, 金亚旭, 化学学报, 2002, 60, 1722.) |
| [17] | Ratoi, M.; Niste, V. B.; Alghawel, H.; Suen, Y. F.; Nelson, K. RSC Adv. 2014, 4, 4278. |
| [18] | Fry, B. M.; Moody, G.; Spikes, H. A.; Wong, J. S. S. Langmuir 2020, 36, 1147. |
| [19] | Desanker, M.; He, X.; Lu, J.; Liu, P.; Pickens, D. B.; Delferro, M.; Marks, T. J.; Chung, Y. W.; Wang, Q. J. ACS Appl. Mater. Inter. 2017, 9, 9118. |
| [20] | Desanker, M.; He, X.; Lu, J.; Liu, P.; Pickens, D. B.; Delferro, M.; Marks, T. J.; Chung, Y. W.; Wang, Q. J. Tribol. Lett. 2018, 66, 50. |
| [21] | Nalam, P. C.; Pham, A.; Castillo, R. V.; Espinosa-Marzal, R. M. J. Phys. Chem. C 2019, 123, 13672. |
| [22] | Pond, S. J. K.; Tsutsumi, O.; Rumi, M.; Kwon, O.; Zojer, E.; Bredas, J. L.; Marder, S. R.; Perry, J. W. J. Am. Chem. Soc. 2004, 126, 9291. |
| [23] | Dong, Z.; Jane, W. Q. J. Tribol. 2011, 133, 041001. |
| [24] | Zhang, W. F.; Ying, Z. N.; Wen, S. Z. Tribology 1988, 6, 39. (in Chinese) |
| [24] | (张文法, 应自能, 温诗铸, 摩擦学, 1988, 6, 39.) |
| [25] | Wilson, D.; Langell, M. A. Appl. Surf. Sci. 2014, 303, 6. |
| [26] | Wu, X. J.; Zhang, Z. Z.; Liang, Q. S.; Meng, J. J. Cryst. Growth 2012, 340, 74. |
| [27] | Kurtz, R. L.; Henrich, V. E. Surf. Sci. 1983, 129, 345. |
| [28] | Paparazzo, E. J. Electron Spectrosc. Relat. Phenom. 1987, 43, 97. |
| [29] | Normand, F. L.; Hommet, J.; Szorenyi, T.; Fuchs, C.; Fogarassy, E. Phys. Rev. B 2001, 64, 235416. |
| [30] | Hasik, M.; Bernasik, A.; Drelinkiewicz, A.; Kowalski, K.; Wenda, E.; Camra, J. Surf. Sci. 2002, 507, 916. |
| [31] | De Faria, D. L. A.; Venancio Silva, S.; de Oliveira, M. T. J. Raman Spectrosc. 1997, 28, 873. |
| [32] | Soler, M. A. G.; Qu, F. Raman Spectroscopy for Nanomaterials Characterization, Eds.: Kumar, C. S. S. R., Springer, Berlin, Heidelberg, 2012, p. 379. |
| [33] | Johnson, B.; Wu, H.; Desanker, M.; Pickens, D.; Chung, Y. W.; Wang, Q. J. Tribol. Lett. 2018, 66, 2. |
| [34] | Hu, W. J.; Zhang, Z. J.; Zeng X. Q.; Li, J. S. Ind. Eng. Chem. Res. 2019, 59, 215. |
| [35] | Uluçcam, G.; Beynek, N.; Seller, Z.; Akalın, G.; Turan, G.; Benkli, K. Phosphorus, Sulfur Silicon Relat. Elem. 2008, 183, 2237. |
/
| 〈 |
|
〉 |