Article

In situ Alkylation Regulation of the Structure and Properties of Inorganic-Organic Hybrid Perovskite-Like Materials

  • Guang-ling Liang ,
  • Xiao-liang Ye ,
  • Guan-E Wang ,
  • Gang Xu
Expand
  • a College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007
    b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002
    c University of Chinese Academy of Sciences, Beijing 100049
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2021-12-22

  Online published: 2022-02-15

Supported by

National Natural Science Foundation of China(91961115); National Natural Science Foundation of China(21975254); National Natural Science Foundation of China(21905280); Youth Innovation Promotion Association of Chinese Academy of Sciences(2018342)

Abstract

Inorganic-organic hybrid perovskite-like materials have attracted widespread attention due to their tunable structure and unique optoelectronic properties. By simply changing the size of the organic cations, the structural dimensions of inorganic-organic hybrid perovskite-like materials can be adjusted. However, most of the research were carried out by selecting different types of organic cationic ligands, which is not conducive to the study of structure-activity relationship. Herein, by choosing different alkylation solvents, the control of dimensions and performance of inorganic-organic hybrid perovskite-like materials was realized when the reaction precursors were consistent. Two new inorganic-organic hybrid materials were synthesized in situ by a simple one-step hydrothermal method, that were two-dimensional (2D) [(Me3)ODA(Me3)]3Pb5I16 (1) and one-dimensional (1D) [H(Et2)ODA(Et2)H]Pb2I6•H2O (2) (ODA=4,4-diaminodiphenyl ether). Compound 1 is consisted by 2D inorganic perovskite-like network layers and [(Me3)ODA(Me3)]2+ organic dications, while compound 2 is composed by 1D inorganic perovskite-like chains, [H(Et2)ODA(Et2)H]2+ and water molecules. Compound 1 and 2 showed different structures and exhibited different stability, optoelectronics, and humidity sensitivity. The methylated compound 1 showed an obvious photoelectric response under visible light illumination (400~790 nm), and the ethylated compound 2 exhibited no photoelectric response. Compound 2 presented better stability to water and organic solvents compared to compound 1, which can be as an ideal candidate in fabricating smart and efficient sensors for humidity detection. The chemiresistive humidity sensor based on compound 2 showed an investigated response in the wide relative humidity (RH) (10%~100%) at room temperature. The sensor showed a high sensitivity in the range of 10%~100% RH and good cycle stability. It displayed 105-fold increase toward 100% RH. The sensing mechanism of the compound 2 based humidity sensor was further studied by direct current (DC) instantaneous reverse polarity method, which proved that the moisture responsiveness was dominated by electronic conduction, and the free transmission of electrons dominated the change of material's conductivity.

Cite this article

Guang-ling Liang , Xiao-liang Ye , Guan-E Wang , Gang Xu . In situ Alkylation Regulation of the Structure and Properties of Inorganic-Organic Hybrid Perovskite-Like Materials[J]. Acta Chimica Sinica, 2022 , 80(4) : 460 -466 . DOI: 10.6023/A21120573

References

[1]
Usoltsev, A. N.; Elshobaki, M.; Adonin, S. A.; Frolova, L. A.; Derzhavskaya, T.; Abramov, P. A.; Anokhin, D. V.; Korolkov, I. V.; Luchkin, S. Y.; Dremova, N. N. J. Mater. Chem. A 2019, 7, 5957.
[2]
Kamminga, M. E.; Fang, H. H.; Filip, M. R.; Giustino, F.; Baas, J.; Blake, G. R.; Loi, M. A.; Palstra, T. T. M. J. Chem. Mater. 2016, 28, 4554.
[3]
Van Gompel, W. T. M.; Herckens, R.; Denis, P.-H.; Mertens, M.; Gélvez-Rueda, M. C.; Van Hecke, K.; Ruttens, B.; D'Haen, J.; Grozema, F. C.; Lutsen, L. J. Mater. Chem. C 2020, 8, 7181.
[4]
Glushkova, A.; Arakcheeva, A.; Pattison, P.; Kollár, M.; Andričević, P.; Náfrádi, B.; Forró, L.; Horváth, E. CrystEngComm 2018, 20, 3543.
[5]
Liu, S, Z.; Chen, Y, Q.; Peng, H, Q.; Ji, Q.; Wang, X, X.; Wei, L, J.; Zhong, Q, Y.; Chen, W, T. J. Solid State Chem. 2021, 299, 12270.
[6]
Zhang, J. D.; Guo, S. S.; Zhu, M. Q.; Li, C.; Chen, J. G.; Liu, L. Z.; Xiang, S. C.; Zhang, Z. J. Chem. Eng. J. 2020, 127328.
[7]
Sun, P.; Ma, F.; Liu, S. X. Chin. Sci. Bull. 2011, 56, 908. (in Chinese)
[7]
(孙萍, 马凤吉, 刘术侠, 科学通报, 2011, 56, 908.)
[8]
Ksiądzyna, M.; Gągor, A.; Piecha-Bisiorek, A.; Ciżman, A.; Medycki, W.; Jakubas, R. J. Mater. Chem. C 2019, 7, 10360.
[9]
Huang, G.; Zhou, H.; Wang, C.; Kashi, C.; Ye, X.; Li, W.; Wang, G. E.; Xu, G. Inorg. Chem. Commun. 2021, 128, 108581.
[10]
Cai, M.; Wang, G. E.; Yao, M.; Wu, G.; Li, Y.; Xu, G. Inorg. Chem. Commun. 2018, 93, 42.
[11]
Song, Z.; Zhao, J.; Liu, Q. Inorg. Chem. Front. 2019, 6, 2969.
[12]
Liu, G. N.; Zhao, R. Y.; Xu, B.; Sun, Y. Q.; Jiang, X. M.; Hu, X.; Li, C. C. ACS Appl. Mater. Interfaces 2020, 12, 54694.
[13]
Ye, S. Y.; Liu, Z. W.; Bian, Z. Q.; Huang, C. H. Acta. Chim. Sinica 2015, 73, 193. (in Chinese)
[13]
(叶森云, 刘志伟, 卞祖强, 黄春辉, 化学学报, 2015, 73, 193.)
[14]
Mitzi, D. B. J. Chem. Soc., alton Trans. 2001, 1, 12.
[15]
Borriello, I.; Cantele, G.; Ninno, D. Phys. Rev. B 2008, 77, 235214.
[16]
Mitzi, D. B.; Wang, S.; Field, C. A.; Chess, C. A.; Guloy, A. Science 1995, 267, 1473.
[17]
Wang, S.; Mitzi, D. B.; Field, C. A.; Guloy, A. J. Am. Chem. Soc. 1995, 117, 5297.
[18]
Weber, O. J.; Marshall, K. L.; Dyson, L. M.; Weller, M. T. Acta Cryst. B 2015, 71, 668.
[19]
Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 822.
[20]
Liu, G.; Liu, J.; Sun, Z.; Zhang, Z.; Chang, L.; Wang, J.; Tao, X.; Zhang, Q. Inorg. Chem. 2016, 55, 8025.
[21]
Yang, D.; Zhang, X.; Hou, Y.; Wang, K.; Ye, T.; Yoon, J.; Wu, C.; Sanghadasa, M.; Liu, S.; Priya, S. Nano Energy 2021, 84, 105934.
[22]
Takeoka, Y.; Fukasawa, M.; Matsui, T.; Kikuchi, K.; Rikukawa, M.; Sanui, K. Chem. Commun. 2005, 378.
[23]
Li, C.; Wan, J.; Zheng, Y.; Dong, W. Mater. Lett. 2012, 76, 187.
[24]
Bu, Q.; Wang, G. E.; Xu, G.; Long, X.; Xia, Y. Inorg. Chem. Commun. 2020, 116.
[25]
Zhang, L.; Li, Z. J.; Lin, Q. P.; Qin, Y. Y.; Zhang, J.; Yin, P. X.; Cheng, J. K.; Yao, Y. G. Inorg. Chem. 2009, 48, 6517.
[26]
Que, C. J.; Mo, C. J.; Li, Z. Q.; Zhang, G. L.; Zhu, Q. Y.; Dai, J. Inorg. Chem. 2017, 56, 2467.
[27]
Wei, Z.; Zhao, Y.; Jiang, J.; Yan, W.; Feng, Y.; Ma, J. Chin. Chem. Lett. 2020, 31, 3055.
[28]
Sun, J.; Wu, J.; Tong, X.; Lin, F.; Wang, Y.; Wang, Z. M. Adv. Sci. 2018, 5, 1700780.
[29]
Lv, J. N.; Zeng, L. R.; Ma, J. Q.; Yue, C. Y. Inorg. Chem. Commun. 2020, 117, 107973.
[30]
Wang, B.; Chen, H.; Guo, W.; Liu, Y.; Han, S.; Hua, L.; Tang, L.; Luo, J.; Sun, Z. J. Mater. Chem. C 2021, 48, 17349.
[31]
McGrath, F.; Ghopade, U.; Ryan, K. M. J. Chem. Phys. 2020, 152, 174702.
[32]
Zhou, J.; Huang, J. Adv. Sci. 2018, 5, 1700256.
[33]
Haque, M. A.; Li, J. L.; Abdelhady, A. L.; Saidaminov, M. I.; Baran, D.; Bakr, O. M.; Wei, S. H.; Wu, T. Adv. Opt. Mater. 2019, 7, 1900865.
[34]
Duan, H. B.; Yu, S. S.; Liu, S. X.; Zhang, H. Dalton Trans. 2017, 46, 2220.
[35]
Tablero Crespo, C. Sol. Energy Mater. Sol. Cells 2019, 195, 269.
[36]
Lin, Y.; Jiang, H. J.; Liang, G. L.; Deng, W. H.; Li, Q. H.; Li, W. H.; Xu, G. CrystEngComm 2021, 23, 3549.
[37]
Wang, L.; He, Y.; Hu, J.; Qi, Q.; Zhang, T. Sens. Actuators, B 2011, 153, 460.
[38]
Yeh, Y. C.; Tseng, T. Y. J. Mater. Sci. 1989, 24, 2739.
[39]
Zhang, T.; He, Y.; Wang, R.; Geng, W.; Wang, L.; Niu, L.; Li, X. Sens. Actuators, B 2008, 131, 687.
[40]
Wang, C. P.; Kashi, C.; Ye, X. L.; Li, W. H.; Wang, G. E.; Xu, G.; Chin. J. Struct. Chem. 2021, 40, 1138.
Outlines

/