Preparation and Adsorption Properties of Lithium Chloride Intercalation Carbon Nitride
Received date: 2021-12-29
Online published: 2022-02-22
Supported by
National Natural Science Foundation of China(51874227); National Natural Science Foundation of China(51402231); Shaanxi Provincial Research Foundation for Basic Research, China(2019JLM-43); Shaanxi Provincial Research Foundation for Basic Research, China(2020JQ-677); Shaanxi Provincial Research Foundation for Basic Research, China(2022KW-33)
In recent years, the pollution of organic wastewater to the environment has attracted extensive attention. The adsorption method is simple and has been used for the adsorption of organic dyes in wastewater. In this study, lithium chloride (LiCl) was intercalated on graphite like carbon nitride (g-C3N4), a series of Li intercalated g-C3N4 adsorbents (Li/GCN-x) were synthesized. And use X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), N2 adsorption-desorption and other methods to comprehensively test and characterize the phase structure, morphology, and surface area of the prepared samples. At the same time, the influence of the amount of LiCl added on the adsorption of methylene blue (MB) on the intercalation material at room temperature was investigated. The optimal Li content in the intercalation g-C3N4 was determined. The research results show that compared with pure g-C3N4, the prepared Li/GCN-5 can form fibers with uniform diameters between the layers, XRD results show that the addition of LiCl makes the lattice of g-C3N4 expand and the layer spacing expand, indicating the successful intercalation of LiCl. The pH and the binding time between the adsorbent and MB were studied. The new functional groups of the adsorbent can form hydrogen bonds with MB molecules and interact through π-π bonds. When only 50 mg of the adsorbent is added, the maximum adsorption capacity can reach 704 mg•g–1 in 5 min. In addition, adsorption kinetics simulations have been carried out. The results show that the intercalation adsorbent can adsorb MB. The model conforms to the quasi-second-order kinetic equation. The Weber-Morris model was further used to explore the adsorption control process. The results showed that the adsorption of MB was caused by the combined action of surface diffusion and intrapore diffusion, in which surface diffusion was dominant, and the newly added functional groups could form hydrogen bonds with MB molecules, and the interaction enhances the adsorption capacity through π-π bonds. The as-prepared materials in this study are stable, uniform and have large specific surface area, which can simply and quickly realize the adsorption of MB. It provides a simple, low-cost, and efficient method for the adsorption and removal of organic pollutants, which overcomes the shortcomings of slow kinetics of commonly used adsorbents.
Yaru Wei , Jing Ma , Tingting Yuan , Jiawei Jiang , Yinli Duan , Juanqin Xue . Preparation and Adsorption Properties of Lithium Chloride Intercalation Carbon Nitride[J]. Acta Chimica Sinica, 2022 , 80(4) : 494 -502 . DOI: 10.6023/A21120594
[1] | Kumar, Y.; Rani, S.; Shabir, J.; Kumar, L. S. ACS Omega 2020, 5, 13250. |
[2] | Cheng, N.; Tian, J.; Liu, Q.; Ge, C.; Qusti, A. H.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. ACS Appl. Mater. Inter. 2013, 5, 6815. |
[3] | Cai, X.; He, J.; Chen, L.; Chen, K.; Li, Y.; Zhang, K.; Jin, Z.; Liu, J.; Wang, C.; Wang, X.; Kong, L.; Liu, J. Chemosphere 2017, 171, 192. |
[4] | Oyewo, O. A.; Adeniyi, A.; Sithole, B. B.; Onyango, M. S. ACS Omega. 2020, 5, 18798. |
[5] | Liu, Q.; Li, Y.; Chen, H.; Lu, J.; Yu, G.; Moslang, M.; Zhou, Y. J. Hazard. Mater. 2020, 382, 121040. |
[6] | Shen, C.; Chen, C.; Wen, T.; Zhao, Z.; Wang, X.; Xu, A. J. Colloid Interf. Sci. 2015, 456, 7. |
[7] | Xiong, Y.; Zhang, C.; Duan, M.; Chen, J.; Fang, S.; Li, J.; Shi, P.; Ren, J.; Wan, H. Langmuir 2021, 37, 7655. |
[8] | Li, J.; Huang, Y.; Liu, Z.; Zhang, J.; Liu, X.; Luo, H.; Ma, Y.; Xu, X.; Lu, Y.; Lin, J.; Zou, J.; Tang, C. J. Mater. Chem. A 2015, 3, 8185. |
[9] | Wang, D.; Shen, H.; Guo, L.; Wang, C.; Fu, F. ACS Omega. 2016, 1, 566. |
[10] | He, X.; Male, K. B.; Nesterenko, P. N.; Brabazon, D.; Paull, B.; Luong, J. H. ACS Appl. Mater. Interfaces 2013, 5, 8796. |
[11] | Qiu, C.; Xu, Y.; Fan, X.; Xu, D.; Tandiana, R.; Ling, X.; Jiang, Y.; Liu, C.; Yu, L.; Chen, W.; Su, C. Adv. Sci. 2019, 6, 1801403. |
[12] | Alam, K. M.; Kumar, P.; Kar, P.; Goswami, A.; Thakur, U. K.; Zeng, S.; Vahidzadeh, E.; Cui, K.; Shankar, K. Nanotechnology 2019, 31, 084001. |
[13] | Zhang, Z.; Ge, C.; Chen, Y.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2019, 77, 60. (in Chinese) |
[13] | (张志琦, 葛承宣, 陈玉刚, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2019, 77, 60.) |
[14] | Chai, B.; Yan, J.; Fan, G.; Song, G.; Wang, C. Chin. J. Catal. 2020, 41, 190. (in Chinese) |
[14] | (柴波, 闫俊涛, 范国枝, 宋光森, 王春蕾, 催化学报, 2020, 41, 190.) |
[15] | Meng, Q.; Lv, H.; Yuan, M.; Chen, Z.; Chen, Z.; Wang, X. ACS Omega. 2017, 2, 2728. |
[16] | Tian, W.; Shen, Q.; Li, N.; Zhou, J. RSC Adv. 2016, 6, 25568. |
[17] | Zhou, Y.; Liao, C.; Fan, Y.; Ma, S.; Su, M.; Zhou, Z.; Chan, T.-S.; Lu, Y.-R.; Shih, K. Environ. Sci. Nano 2019, 6, 3324. |
[18] | Liao, G.; Gong, Y.; Zhang, L.; Gao, H.; Yang, G.-J.; Fang, B. Energy Environ. Sci. 2019, 12, 2080. |
[19] | He, L.; Tang, X.; Zhang, L.; Li, Y.; Xiang, G.; Zhou, X.; Ling, F.; Yao, L.; Jaing, H. Acta Chim. Sinica 2021, 79, 506. (in Chinese) |
[19] | (何利蓉, 唐笑, 张灵, 李艳虹, 相国涛, 周贤菊, 凌发令, 姚璐, 蒋浩, 化学学报, 2021, 79, 506.) |
[20] | Song, S.; Lu, C.; Wu, X.; Jiang, S.; Sun, C.; Le, Z. Appl. Catal. B: Environ. 2018, 227, 145. |
[21] | Gao, X.; Feng, J.; Su, D.; Ma, Y.; Wang, G.; Ma, H.; Zhang, J. Nano Energy 2019, 59, 598. |
[22] | Gao, H.; Yan, S.; Wang, J.; Huang, Y. A.; Wang, P.; Li, Z.; Zou, Z. Phys. Chem. Chem. Phys. 2013, 15, 18077. |
[23] | Yan, J.; Wu, H.; Chen, H.; Pang, L.; Zhang, Y.; Jiang, R.; Li, L.; Liu, S. Appl. Catal. B: Environ. 2016, 194, 74. |
[24] | Cui, W.; Li, J.; Cen, W.; Sun, Y.; Lee, S. C.; Dong, F. J. Catal. 2017, 352, 351. |
[25] | Rajapakse, M.; Karki, B.; Abu, U. O.; Pishgar, S.; Musa, M. R. K.; Riyadh, S. M. S.; Yu, M.; Sumanasekera, G.; Jasinski, J. B. Npj. 2D Mater. Appl. 2021, 5, 1. |
[26] | Mashtalir, O.; Naguib, M.; Mochalin, V. N.; Dall'Agnese, Y.; Heon, M.; Barsoum, M. W.; Gogotsi, Y. Nat. Commun. 2013, 4, 1716. |
[27] | Dong, X.; Cheng, F. J. Mater. Chem. A 2015, 3, 23642. |
[28] | Wang, N.; Pang, H.; Yu, S.; Gu, P.; Song, S.; Wang, H.; Wang, X. Acta Chim. Sinica 2019, 77, 143. (in Chinese) |
[28] | (王宁, 庞宏伟, 于淑君, 顾鹏程, 宋爽, 王宏青, 王祥科, 化学学报, 2019, 77, 143.) |
[29] | Zhu, X.; Liu, B.; Hou, H.; Huang, Z.; Zeinu, K. M.; Huang, L.; Yuan, X.; Guo, D.; Hu, J.; Yang, J. Electrochim. Acta 2017, 248, 46. |
[30] | Cui, W.; Chen, P.; Chen, L.; Li, J.; Zhou, Y.; Dong, F. J. Phys. Energy 2021, 3, 032008. |
[31] | Zeng, Z.; Quan, X.; Yu, H.; Chen, S.; Choi, W.; Kim, B.; Zhang, S. J. Catal. 2019, 377, 72. |
[32] | Wang, S.; Zhan, J.; Chen, K.; Ali, A.; Zeng, L.; Zhao, H.; Hu, W.; Zhu, L.; Xu, X. ACS Sustain. Chem. Eng. 2020, 8, 8214. |
[33] | Li, J.; Cui, W.; Sun, Y.; Chu, Y.; Cen, W.; Dong, F. J. Mater. Chem. A. 2017, 5, 9358. |
[34] | Xiong, T.; Cen, W.; Zhang, Y.; Dong, F. ACS Catal. 2016, 6, 2462. |
[35] | Huang, Y.; Su, M.; Zhou, Y.; Chen, D.; Xu, Z.; Zhang, H.; Liao, C. Ceram. Int. 2020, 46, 26492. |
[36] | Mao, N. Sci. Rep. 2019, 9, 12383. |
[37] | Ma, L.; Fan, H.; Wang, J.; Zhao, Y.; Tian, H.; Dong, G. Appl. Catal. B: Environ. 2016, 190, 93. |
[38] | Xie, Q.; He, W.; Liu, S.; Li, C.; Zhang, J.; Wang, B. Chin. J. Catal. 2020, 41, 153. (in Chinese) |
[38] | (谢权, 何婉楣, 刘升卫, 李传浩, 张金锋, 王保强, 催化学报, 2020, 41, 153.) |
[39] | Wang, M.; Jin, C.; Li, Z.; You, M.; Zhang, Y.; Zhu, T. J. Colloid. Interf. Sci. 2019, 533, 513. |
[40] | Jin, A.; Jia, Y.; Chen, C.; Liu, X.; Jiang, J.; Chen, X.; Zhang, F. J. Phys. Chem. C 2017, 121, 21497. |
[41] | Liu, H.; Chen, D.; Wang, Z.; Jing, H.; Zhang, R. Appl. Catal. B: Environ. 2017, 203, 300. |
[42] | Zhu, A.; Qiao, L.; Tan, P.; Pan, J. Inorg. Chem. Front. 2020, 7, 4754. |
[43] | Liu, W.; Peng, R.; Ye, X.; Guo, J.; Luo, L. Appl. Surf. Sci. 2021, 560, 150013. |
[44] | Zhu, Y. -P.; Li, M.; Liu, Y.-L.; Ren, T.-Z.; Yuan, Z.-Y. J. Phys. Chem. C 2014, 118, 10963. |
[45] | Ma, L.; Fan, H.; Li, M.; Tian, H.; Fang, J.; Dong, G. J. Phys. Chem. A 2015, 3, 22404. |
[46] | Lei, L.; Wang, W.; Wang, C.; Zhang, M.; Zhong, Q.; Fan, H. Ceram. Int. 2021, 47, 1258. |
[47] | Fronczak, M.; Demby, K.; Strachowski, P.; Strawski, M.; Bystrzejewski, M. Langmuir 2018, 34, 7272. |
[48] | Ren, B.; Miao, J.; Wang, S.; Xu, Y.; Zhai, Z.; Dong, X.; Liu, Z. Adv. Powder Technol. 2021, 32, 1774. |
[49] | Liu, W.; Peng, R.; Luo, L.; Li, C.; Ye, X. Mater. Sci. Semicond. Process. 2022, 138. |
[50] | Meng, S.; Wang, M.; Lv, B.; Xue, Q.; Yang, Z. Acta Chim. Sinica 2019, 77, 1184. (in Chinese) |
[50] | (孟双艳, 王明明, 吕柏霖, 薛群基, 杨志旺, 化学学报, 2019, 77, 1184.) |
[51] | Zhang, G.; Zhang, M.; Ye, X.; Qiu, X.; Lin, S.; Wang, X. Adv. Mater. 2014, 26, 805. |
[52] | Hong, Y.; Jiang, Y.; Li, C.; Fan, W.; Yan, X.; Yan, M.; Shi, W. Appl. Catal. B: Environ. 2016, 180, 663. |
[53] | Wang, R.; Zou, Y.; Hong, S.; Xu, M.; Ling, L. Acta Chim. Sinica 2021, 79, 932. (in Chinese) |
[53] | (王瑞兆, 邹云杰, 洪晟, 徐铭楷, 凌岚, 化学学报, 2021, 79, 932.) |
[54] | Xiong, T.; Wang, H.; Zhou, Y.; Sun, Y.; Cen, W.; Huang, H.; Zhang, Y.; Dong, F. Nanoscale 2018, 10, 8066. |
[55] | Li, D.; Li, B.; Li, C.; Yu, X.; Chan, Y.; Chen, K. Chem. J. Chin. Univ. 2021, 42, 1292. (in Chinese) |
[55] | (李冬平, 李彬, 李长恒, 于薛刚, 单妍, 陈克正, 高等学校化学学报, 2021, 42, 1292.) |
[56] | Islam, M. M.; Tentu, R. D.; Ali, M. A.; Basu, S. ChemistrySelect 2018, 3, 11241. |
[57] | Geng, A.; Zhang, Y.; Xu, X.; Bi, H.; Zhu, J. J. Mater. Sci.: Mater. Electron. 2020, 31, 3869. |
[58] | Fronczak, M.; Krajewska, M.; Demby, K.; Bystrzejewski, M. J. Phys. Chem. C 2017, 121, 15756. |
[59] | Ma, C.; Wu, J.; Zhu, L.; Han, X.; Ruan, W.; Song, W.; Wang, X.; Zhao, B. Acta Chim. Sinica 2019, 77, 1024. (in Chinese) |
[59] | (马超, 武佳炜, 朱琳, 韩晓霞, 阮伟东, 宋薇, 王旭, 赵冰, 化学学报, 2019, 77, 1024.) |
[60] | Feng, M.; You, W.; Wu, Z.; Chen, Q.; Zhan, H. ACS Appl. Mater. Interfaces 2013, 5, 12654. |
[61] | Zhu, W.; Jiang, K.; You, F.; Yao, C.; Wang, K.; Jiang, X. Acta Mater. Compos. Sin. 2021, 38, 1 (in Chinese) |
[61] | (朱薇, 江坤, 游峰, 姚楚, 王昆, 江学良, 复合材料学报, 2021, 38, 1.) |
[62] | Xu, J.; Li, S.; Wang, F.; Yang, Z.; Liu, H. J. Chem. Eng. Data 2019, 64, 1816. |
/
〈 |
|
〉 |