Review

Thermomicrofluidic Biosensing Systems

  • Chao Liu ,
  • Fei Tian ,
  • Jinqi Deng ,
  • Jiashu Sun
Expand
  • a Beijing Engineering Research Center for BioNanotechnology, National Center for Nanoscience and Technology, Beijing 100190
    b University of Chinese Academy of Sciences, Beijing 100049
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
*E-mail: ; Tel.: 010-82545621; Fax: 010-82545621

Received date: 2021-12-31

  Online published: 2022-02-24

Supported by

National Key R&D Program of China(2020YFA0210800); National Key R&D Program of China(2021YFA0909400); National Natural Science Foundation of China(22025402); National Natural Science Foundation of China(91959101); National Natural Science Foundation of China(21904028); National Natural Science Foundation of China(22104026); National Natural Science Foundation of China(22174030); Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16021200)

Abstract

The sensitive and specific detection of key molecules and biological micro/nanoparticles in complex biological systems is of great significance for understanding biological processes at multiple levels and scales, uncovering the mechanisms of disease onset and development, and exploring novel biomarkers. Microfluidic biosensors with advantages of microfluidics and biosensing have made significant progress in the precise detection of biological samples with small volumes. Recent years, thermomicrofluidic biosensing that combines thermophoretic migration in a temperature gradient and homogenous signal amplification strategies has realized rapid, sensitive, in situ detection of biomolecules and biological micro/ nanoparticles in complex biological systems. Different thermomicrofluidic biosensing strategies, including microscale thermophoresis (MST), thermophoresis-convection coupling, thermophoresis-diffusiophoresis coupling, and thermophoresis-electrophoresis coupling were presented. The fundamentals, features, and applications of these strategies in detecting biomolecules (protein, nucleic acids, etc.) and biological micro/nanoparticles (extracellular vesicles, viral particles, cells, etc.) were summarized. The challenge and future directions for the application of thermomicrofluidic sensing in biomedical detection were discussed.

Cite this article

Chao Liu , Fei Tian , Jinqi Deng , Jiashu Sun . Thermomicrofluidic Biosensing Systems[J]. Acta Chimica Sinica, 2022 , 80(5) : 679 -689 . DOI: 10.6023/A21120610

References

[1]
Wan, J. C. M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J. D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Nat. Rev. Cancer 2017, 17, 223.
[2]
Borrebaeck, C. A. K. Nat. Rev. Cancer 2017, 17, 199.
[3]
Tian, F.; Liu, C.; Lin, L.; Chen, Q.; Sun, J. TrAC, Trends Anal. Chem. 2019, 117, 128.
[4]
Kalluri, R.; LeBleu, V. S. Science 2020, 367, eaau6977.
[5]
Kevadiya, B. D.; Machhi, J.; Herskovitz, J.; Oleynikov, M. D.; Blomberg, W. R.; Bajwa, N.; Soni, D.; Das, S.; Hasan, M.; Patel, M.; Senan, A. M.; Gorantla, S.; McMillan, J.; Edagwa, B.; Eisenberg, R.; Gurumurthy, C. B.; Reid, S. P. M.; Punyadeera, C.; Chang, L.; Gendelman, H. E. Nat. Mater. 2021, 20, 593.
[6]
Möller, A.; Lobb, R. J. Nat. Rev. Cancer 2020, 20, 697.
[7]
Lim, C. Z. J.; Zhang, Y.; Chen, Y.; Zhao, H.; Stephenson, M. C.; Ho, N. R. Y.; Chen, Y.; Chung, J.; Reilhac, A.; Loh, T. P.; Chen, C. L. H.; Shao, H. Nat. Commun. 2019, 10, 1144.
[8]
Tsokos, G. C. Nat. Immunol. 2020, 21, 605.
[9]
Ma, Q.-L.; Feng, N.; Ju, H.-X. Acta Chim. Sinica 2020, 78, 1213. (in Chinese)
[9]
(马秋琳, 冯楠, 鞠熀先, 化学学报, 2020, 78, 1213.)
[10]
Li, Y.-Y.; Peng, Y.; Lu, H.-J. Acta Chim. Sinica 2021, 79, 705. (in Chinese)
[10]
(李月悦, 彭叶, 陆豪杰, 化学学报, 2021, 79, 705.)
[11]
Li, Y.; Wang, Y.; Xie, X.-L.; Zhang, J.; Tang, B. Acta Chim. Sinica 2021, 79, 36. (in Chinese)
[11]
(李勇, 王栩, 解希雷, 张建, 唐波, 化学学报, 2021, 79, 36.)
[12]
Wu, L.; Qu, X. Chem. Soc. Rev. 2015, 44, 2963.
[13]
Kwong, G. A.; Ghosh, S.; Gamboa, L.; Patriotis, C.; Srivastava, S.; Bhatia, S. N. Nat. Rev. Cancer 2021, 21, 655.
[14]
Lu, J.-M.; Wang, H.-F.; Pan, J.-Z.; Fang, Q. Acta Chim. Sinica 2021, 79, 809. (in Chinese)
[14]
(卢佳敏, 王慧峰, 潘建章, 方群, 化学学报, 2021, 79, 809.)
[15]
Su, Y.-Y.; Peng, T.-H.; Xing, F.-F.; Li, D.; Fan, C.-H. Acta Chim. Sinica 2017, 75, 1036. (in Chinese)
[15]
(苏莹莹, 彭天欢, 邢菲菲, 李迪, 樊春海, 化学学报, 2017, 75, 1036.)
[16]
Lin, L.; Hill, E. H.; Peng, X.; Zheng, Y. Acc. Chem. Res. 2018, 51, 1465.
[17]
Niether, D.; Wiegand, S. J. Phys.-Condes. Matter 2019, 31, 503003.
[18]
Chen, J.; Loo, J. F.-C.; Wang, D.; Zhang, Y.; Kong, S.-K.; Ho, H.-P. Adv. Opt. Mater. 2020, 8, 1900829.
[19]
Tian, F.; Han, Z.; Deng, J.; Liu, C.; Sun, J. View 2021, 2, 20200148.
[20]
Gooding, J. J.; Gaus, K. Angew. Chem., nt. Ed. 2016, 55, 11354.
[21]
Wienken, C. J.; Baaske, P.; Rothbauer, U.; Braun, D.; Duhr, S. Nat. Commun. 2010, 1, 100.
[22]
Baaske, P.; Wienken, C. J.; Reineck, P.; Duhr, S.; Braun, D. Angew. Chem.,Int. Ed. 2010, 49, 2238.
[23]
Asmari, M.; Ratih, R.; Alhazmi, H. A.; El Deeb, S. Methods 2018, 146, 107.
[24]
Braun, D.; Libchaber, A. Phys. Rev. Lett. 2002, 89, 188103.
[25]
Duhr, S.; Braun, D. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 19678.
[26]
Würger, A. Phys. Rev. Lett. 2008, 101, 108302.
[27]
Jerabek-Willemsen, M.; Wienken, C. J.; Braun, D.; Baaske, P.; Duhr, S. Assay Drug Dev. Technol. 2011, 9, 342.
[28]
Duhr, S.; Braun, D. Phys. Rev. Lett. 2006, 96, 168301.
[29]
Putnam, S. A.; Cahill, D. G.; Wong, G. C. L. Langmuir 2007, 23, 9221.
[30]
Iacopini, S.; Piazza, R. Europhys. Lett. 2003, 63, 247.
[31]
Duhr, S.; Arduini, S.; Braun, D. Eur. Phys. J. E: Soft Matter Biol. Phys. 2004, 15, 277.
[32]
Piazza, R.; Guarino, A. Phys. Rev. Lett. 2002, 88, 208302.
[33]
Seidel, S. A. I.; Wienken, C. J.; Geissler, S.; Jerabek-Willemsen, M.; Duhr, S.; Reiter, A.; Trauner, D.; Braun, D.; Baaske, P. Angew. Chem., nt. Ed. 2012, 51, 10656.
[34]
Shang, X.; Marchioni, F.; Evelyn, C. R.; Sipes, N.; Zhou, X.; Seibel, W.; Wortman, M.; Zheng, Y. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 3155.
[35]
Möller, F. M.; Kieß, M.; Braun, D. J. Am. Chem. Soc. 2016, 138, 5363.
[36]
Liu, T.; Zhang, H.; Sun, L.; Zhao, D.; Liu, P.; Yan, M.; Zaidi, N.; Izadmehr, S.; Gupta, A.; Abu-Amer, W.; Luo, M.; Yang, J.; Ou, X.; Wang, Y.; Bai, X.; Wang, Y.; New, M. I.; Zaidi, M.; Yuen, T.; Liu, C. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 7683.
[37]
Lee, G.-Y.; Min, P.; Kang, M.-J.; Langer, K.; Jose, J.; Pyun, J.-C. Sens. Actuator, B 2018, 258, 1131.
[38]
Lee, G.-Y.; Bong, J.-H.; Jung, J.; Kang, M.-J.; Jose, J.; Pyun, J.-C. Biosens. Bioelectron. 2020, 156, 112110.
[39]
Franz, P.; Gassl, V.; Topf, A.; Eckelmann, L.; Iorga, B.; Tsiavaliaris, G. Biosens. Bioelectron. 2020, 169, 112616.
[40]
Stein, J. A. C.; Ianeselli, A.; Braun, D. Angew. Chem., nt. Ed. 2021, 60, 13988.
[41]
Xu, R.; Rai, A.; Chen, M.; Suwakulsiri, W.; Greening, D. W.; Simpson, R. J. Nat. Rev. Clin. Oncol. 2018, 15, 617.
[42]
Huang, M.; Yang, J.; Wang, T.; Song, J.; Xia, J.; Wu, L.; Wang, W.; Wu, Q.; Zhu, Z.; Song, Y.; Yang, C. Angew. Chem., nt. Ed. 2020, 59, 4800.
[43]
Braun, M.; Bregulla, A. P.; Günther, K.; Mertig, M.; Cichos, F. Nano Lett. 2015, 15, 5499.
[44]
Fränzl, M.; Thalheim, T.; Adler, J.; Huster, D.; Posseckardt, J.; Mertig, M.; Cichos, F. Nat. Methods 2019, 16, 611.
[45]
Braun, M.; Cichos, F. ACS Nano 2013, 7, 11200.
[46]
Duhr, S.; Braun, D. Appl. Phys. Lett. 2005, 86, 131921.
[47]
Baaske, P.; Weinert, F. M.; Duhr, S.; Lemke, K. H.; Russell, M. J.; Braun, D. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 9346.
[48]
Mast, C. B.; Schink, S.; Gerland, U.; Braun, D. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 8030.
[49]
Kreysing, M.; Keil, L.; Lanzmich, S.; Braun, D. Nat. Chem. 2015, 7, 203.
[50]
Mast, C. B.; Braun, D. Phys. Rev. Lett. 2010, 104, 188102.
[51]
Liu, C.; Zhao, J.; Tian, F.; Cai, L.; Zhang, W.; Feng, Q.; Chang, J.; Wan, F.; Yang, Y.; Dai, B.; Cong, Y.; Ding, B.; Sun, J.; Tan, W. Nat. Biomed. Eng. 2019, 3, 183.
[52]
Zhang, L.; Wan, S.; Jiang, Y.; Wang, Y.; Fu, T.; Liu, Q.; Cao, Z.; Qiu, L.; Tan, W. J. Am. Chem. Soc. 2017, 139, 2532.
[53]
Tian, F.; Zhang, S.; Liu, C.; Han, Z.; Liu, Y.; Deng, J.; Li, Y.; Wu, X.; Cai, L.; Qin, L.; Chen, Q.; Yuan, Y.; Liu, Y.; Cong, Y.; Ding, B.; Jiang, Z.; Sun, J. Nat. Commun. 2021, 12, 2536.
[54]
Li, Y.; Deng, J.; Han, Z.; Liu, C.; Tian, F.; Xu, R.; Han, D.; Zhang, S.; Sun, J. J. Am. Chem. Soc. 2021, 143, 1290.
[55]
O’Brien, K.; Breyne, K.; Ughetto, S.; Laurent, L. C.; Breakefield, X. O. Nat. Rev. Mol. Cell Biol. 2020, 21, 585.
[56]
Zhao, J.; Liu, C.; Li, Y.; Ma, Y.; Deng, J.; Li, L.; Sun, J. J. Am. Chem. Soc. 2020, 142, 4996.
[57]
Han, Z.; Wan, F.; Deng, J.; Zhao, J.; Li, Y.; Yang, Y.; Jiang, Q.; Ding, B.; Liu, C.; Dai, B.; Sun, J. Nano Today 2021, 38, 101203.
[58]
Abécassis, B.; Cottin-Bizonne, C.; Ybert, C.; Ajdari, A.; Bocquet, L. Nat. Mater. 2008, 7, 785.
[59]
Rasmussen, M. K.; Pedersen, J. N.; Marie, R. Nat. Commun. 2020, 11, 2337.
[60]
Jiang, H.-R.; Wada, H.; Yoshinaga, N.; Sano, M. Phys. Rev. Lett. 2009, 102, 208301.
[61]
Maeda, Y. T.; Buguin, A.; Libchaber, A. Phys. Rev. Lett. 2011, 107, 038301.
[62]
Maeda, Y. T.; Tlusty, T.; Libchaber, A. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 17972.
[63]
Deng, J.; Tian, F.; Liu, C.; Liu, Y.; Zhao, S.; Fu, T.; Sun, J.; Tan, W. J. Am. Chem. Soc. 2021, 143, 7261.
[64]
Yu, L.-H.; Chen, Y.-F. Anal. Chem. 2015, 87, 2845.
[65]
Dietzel, M.; Hardt, S. Phys. Rev. Lett. 2016, 116, 225901.
[66]
Li, J.; Zheng, Y. Acc Mater. Res. 2021, 2, 352.
[67]
Lin, L.; Zhang, J.; Peng, X.; Wu, Z.; Coughlan, A. C. H.; Mao, Z.; Bevan, M. A.; Zheng, Y. Sci. Adv. 2017, 3, e1700458.
[68]
Lin, L.; Peng, X.; Mao, Z.; Wei, X.; Xie, C.; Zheng, Y. Lab Chip 2017, 17, 3061.
[69]
Lin, L.; Peng, X.; Wang, M.; Scarabelli, L.; Mao, Z.; Liz-Marzán, L. M.; Becker, M. F.; Zheng, Y. ACS Nano 2016, 10, 9659.
[70]
Lin, L.; Wang, M.; Peng, X.; Lissek, E. N.; Mao, Z.; Scarabelli, L.; Adkins, E.; Coskun, S.; Unalan, H. E.; Korgel, B. A.; Liz-Marzán, L. M.; Florin, E.-L.; Zheng, Y. Nat. Photonics 2018, 12, 195.
[71]
Lin, L.; Peng, X.; Wei, X.; Mao, Z.; Xie, C.; Zheng, Y. ACS Nano 2017, 11, 3147.
[72]
Hill, E. H.; Li, J.; Lin, L.; Liu, Y.; Zheng, Y. Langmuir 2018, 34, 13252.
Outlines

/