Article

High-Throughput Computational Screening of Metal-Organic Frameworks for CH4/H2 Separation by Synergizing Machine Learning and Molecular Simulation

  • Shihui Wang ,
  • Xiaoyu Xue ,
  • Min Cheng ,
  • Shaochen Chen ,
  • Chong Liu ,
  • Li Zhou ,
  • Kexin Bi ,
  • Xu Ji
Expand
  • School of Chemical Engineering, Sichuan University, Chengdu 610065

Received date: 2022-01-16

  Online published: 2022-02-24

Supported by

Young Scientists Fund of the National Natural Science Foundation of China(22108178)

Abstract

In this work, a hierarchical screening strategy by synergizing machine learning (ML) and molecular simulation was proposed to identify the optimal adsorbents for CH4/H2 separation from 134185 hypothetical metal-organic frameworks (MOFs). At the initial screening, MOF materials with inappropriate pore size and/or volumetric surface area were removed from the total database, resulting in a list of 62278 MOFs. Among them, 10% MOFs were randomly chosen and grand canonical Monte Carlo (GCMC) simulations were performed to calculate the adsorption behaviors of CH4/H2 mixture in these MOFs under vacuum swing adsorption (VSA) and pressure swing adsorption (PSA) conditions. Following this, structural/ chemical descriptors and corresponding adsorbent performance scores (APS) of the selected MOFs were employed to develop the random forest (RF) models for VSA and PSA processes. Compared with the accuracy of other ML algorithms, covering support vector machine, k-nearest neighbor, decision tree, and artificial neural network, the proposed model exhibits the optimum predictive power. Meanwhile, the hybrid of structural and chemical descriptors, as well as the application of the preliminary screening strategy improve the accuracy of the RF model. Thus, it was used to predict the APS values of the remaining 90% MOFs in the next stage of screening, and the top 1000 candidates were screened out according to the results. GCMC simulations were subsequently carried out on the top candidates to refine the predictions, and then ten MOFs with the best CH4/H2 separation performance were obtained under VSA and PSA conditions, respectively. The high performance of the optimal MOFs was verified by comparison with well-studied MOF materials in the literature. Finally, the feature importance of the descriptors was interpreted by the Shapley Additive Explanations. The result reveals the potential for the developed model to transfer between the two operating conditions due to the consistency of the dominant descriptors, which also provides an efficient pathway for rapid screening of promising MOF adsorbents in CH4/H2 separation suitable for different operation scenarios.

Cite this article

Shihui Wang , Xiaoyu Xue , Min Cheng , Shaochen Chen , Chong Liu , Li Zhou , Kexin Bi , Xu Ji . High-Throughput Computational Screening of Metal-Organic Frameworks for CH4/H2 Separation by Synergizing Machine Learning and Molecular Simulation[J]. Acta Chimica Sinica, 2022 , 80(5) : 614 -624 . DOI: 10.6023/A22010031

References

[1]
Chen, W. D. China Petrochem. Ind. Obser. 2021, 8, 60. (in Chinese)
[1]
(陈卫东, 中国石油和化工产业观察, 2021, 8, 60.)
[2]
Cao, F.; Chen, K. Y.; Guo, T. T.; Jin, X. L.; Wang, H. G.; Zhang, L. Distributed Energy 2020, 5, 1. (in Chinese)
[2]
(曹蕃, 陈坤洋, 郭婷婷, 金绪良, 王海刚, 张丽, 分布式能源, 2020, 5, 1.)
[3]
Malek, A.; Farooq, S. AIChE J. 1998, 44, 1985.
[4]
Herm, Z. R.; Krishna, R.; Long, J. Microporous Mesoporous Mater. 2012, 151, 481.
[5]
Ludwig, K. Development of New Pressure Swing Adsorption (PSA) Technology to Recover High Valued Products from Chemical Plant and Refinery Waste Systems, Report to DOE, DE-FC36-00CH11022, Pennsylvania, Air Products and Chemicals Inc., 2004.
[6]
Krishna, R.; Baten, J. Phys. Chem. Chem. Phys. 2011, 13, 10593.
[7]
Basdogan, Y.; Sezginel, K. B.; Keskin, S. Ind. Eng. Chem. Res. 2015, 54, 8479.
[8]
Yang, Q.; Zhong, C. J. Phys. Chem. B 2006, 110, 17776.
[9]
Liu, B.; Yang, Q.; Xue, C.; Zhong, C.; Chen, B.; Smit, B. J. Phys. Chem. C 2008, 112, 9854.
[10]
Bei, L.; Sun, C.; Chen, G. Chem. Eng. Sci. 2011, 66, 3012.
[11]
Huang, A.; Bux, H.; Steinbach, F.; Caro, J. Angew. Chem., nt. Ed. 2010, 122, 5078.
[12]
Huang, A.; Dou, W.; Caro, J. J. Am. Chem. Soc. 2010, 132, 15562.
[13]
Li, Y.; Liang, F.; Bux, H.; Yang, W.; Caro, J. J. Membr. Sci. 2010, 354, 48.
[14]
Li, Y.-S.; Liang, F.-Y.; Bux, H.; Feldhoff, A.; Yang, W.-S.; Caro, J. Angew. Chem., Int. Ed. 2010, 122, 558.
[15]
Bux, H.; Liang, F.; Li, Y.; Cravillon, J.; Wiebcke, M.; Caro, J. J. Am. Chem. Soc. 2009, 131, 16000.
[16]
Wu, X. J.; Yang, X.; Song, J.; Cai, W. Q. Acta Chim. Sinica 2012, 70, 2518. (in Chinese)
[16]
(吴选军, 杨旭, 宋杰, 蔡卫权, 化学学报, 2012, 70, 2518.)
[17]
Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Fairen-Jimenez, D. Chem. Mater. 2017, 29, 2618.
[18]
Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2012, 4, 83.
[19]
Gómez-Gualdrón, D. A.; Colón, Y. J.; Zhang, X.; Wang, T. C.; Chen, Y. S.; Hupp, J. T.; Yildirim, T.; Farha, O. K.; Zhang, J.; Snurr, R. Q. Energy Environ. Sci. 2016, 9, 3279.
[20]
Moosavi, S. M.; Boyd, P. G.; Sarkisov, L.; Smit, B. ACS Cent. Sci. 2018, 4, 832.
[21]
Li, S.; Chung, Y. G.; Simon, C. M.; Snurr, R. Q. J. Phys. Chem. Lett. 2017, 8, 6135.
[22]
Zhang, H.; Yang, L. M.; Ganz, E. ACS Appl. Mater. Interfaces 2020, 12, 18533.
[23]
Zhang, H.; Yang, L. M.; Ganz, E. ACS Sustainable Chem. Eng. 2020, 8, 14616.
[24]
Zhang, H.; Shang, C.; Yang, L. M.; Ganz, E. Inorg. Chem. 2020, 59, 16665.
[25]
Zhang, H.; Yang, L. M.; Pan, H.; Ganz, E. Cryst. Growth Des. 2020, 20, 6337.
[26]
Yang, L.; Wu, Y. J.; Wu, X. J.; Cai, W. Acta Chim. Sinica 2021, 79, 520. (in Chinese)
[26]
(杨磊, 吴宇静, 吴选军, 蔡卫权, 化学学报, 2021, 79, 520.)
[27]
Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303. (in Chinese)
[27]
(卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 303.)
[28]
Yang, W. Y.; Liang, H.; Qiao, Z. W. Acta Chim. Sinica 2018, 76, 785. (in Chinese)
[28]
(杨文远, 梁红, 乔智威, 化学学报, 2018, 76, 785.)
[29]
Wu, D.; Wang, C.; Liu, B.; Liu, D.; Yang, Q.; Zhong, C. AIChE J. 2012, 58, 2078.
[30]
Altintas, C.; Erucar, I.; Keskin, S. ACS Appl. Mater. Interfaces 2018, 10, 3668.
[31]
Chiau Junior, M. J.; Wang, Y.; Wu, X.; Cai, W. Q. Int. J. Hydrogen Energy 2020, 45, 27320.
[32]
Guo, F. Y.; Liu, Y.; Hu, J.; Liu, H. L.; Hu, Y. Chem. Eng. Sci. 2016, 149, 14.
[33]
Liu, Z. L.; Li, W.; Liu, H.; Zhuang, X. D.; Li, S. Acta Chim. Sinica 2019, 77, 323. (in Chinese)
[33]
(刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.)
[34]
Liang, H.; Jiang, K.; Yan, T. A.; Chen, G. H. ACS Omega 2021, 6, 9066.
[35]
Liang, H.; Yang, W. Y.; Peng, F.; Liu, Z. L.; Liu, J.; Qiao, Z. W. APL Mater. 2019, 7, 091101.
[36]
Qiao, Z. W.; Xu, Q. S.; Jiang, J. W. J. Mater. Chem. A 2018, 6, 18898.
[37]
Chung, Y. G.; Gomez-Gualdron, D. A.; Li, P.; Leperi, K. T.; Deria, P.; Zhang, H.; Vermeulen, N. A.; Stoddart, J. F.; You, F.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q. Sci. Adv. 2016, 2, e1600909.
[38]
Tang, H. J.; Xu, Q. S.; Wang, M.; Jiang, J. W. ACS Appl. Mater. Interfaces 2021, 13, 53454.
[39]
Cai, C. Z.; Li, L. F.; Deng, X. M.; Li, S. H.; Liang, H.; Qiao, Z. W. Acta Chim. Sinica 2020, 78, 427. (in Chinese)
[39]
(蔡铖智, 李丽凤, 邓小梅, 李树华, 梁红, 乔智威, 化学学报, 2020, 78, 427.)
[40]
Moghadam, P. Z.; Rogge, S. M. J.; Li, A.; Chow, C. M.; Wieme, J.; Moharrami, N.; Aragones-Anglada, M.; Conduit, G.; Gomez-Gualdron, D. A.; Van Speybroeck, V.; Fairen-Jimenez, D. Matter 2019, 1, 219.
[41]
Long, R.; Xia, X. X.; Zhao, Y. A.; Li, S.; Liu, Z. C.; Liu, W. iScience 2021, 24, 101914.
[42]
Batra, R.; Chen, C.; Evans, T. G.; Walton, K. S.; Ramprasad, R. Nat. Mach. Intell. 2020, 2, 704.
[43]
Tong, M.; Lan, Y. S.; Yang, Q. Y.; Zhong, C. L. Green Energy Environ. 2018, 3, 107.
[44]
Sheridan, R. P. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 8165.
[45]
Cramer, R. D.; Poss, M. A.; Hermsmeier, M. A.; Caulfield, T. J.; Kowala, M. C.; Valentine, M. T. J. Med. Chem. 1999, 42, 3919.
[46]
Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149, 134.
[47]
Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. Mol. Simul. 2015, 42, 81.
[48]
Halder, P.; Singh, J. K. Energy Fuels 2020, 34, 14591.
[49]
Wu, Y.; Duan, H.; Xi, H. Chem. Mater. 2020, 32, 2986.
[50]
Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W.; Skiff, W. J. Am. Chem. Soc. 1992, 114, 10024.
[51]
Buch, V. J. Chem. Phys. 1994, 100, 7610.
[52]
Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569.
[53]
Abascal, J. L. F.; Vega, C. J. Chem. Phys. 2005, 123, 234505.
[54]
Rappe, A. K.; Goddard, W. A. J. Chem. Phys. 1991, 95, 3358.
[55]
Simon, C. M.; Mercado, R.; Schnell, S. K.; Smit, B.; Haranczyk, M. Chem. Mater. 2015, 27, 4459.
[56]
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, É. J. Mach. Learn. Res. 2011, 12, 2825.
[57]
Archer, K. J.; Kimes, R. V. Comput. Stat. Data An. 2008, 52, 2249.
[58]
Lundberg, S.; Lee, S. I. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17), Ed.: Hook, R., Curran Associates Inc., New York, 2017,p. 4768.
[59]
Tong, M. M.; Yang, Q. Y.; Zhong, C. L. Microporous Mesoporous Mater. 2015, 210, 142.
[60]
Ma, R. M.; Colo?n, Y. J.; Luo, T. F. ACS Appl. Mater. Interfaces 2020, 12, 34041.
[61]
Fanourgakis, G. S.; Gkagkas, K.; Tylianakis, E.; Froudakis, G. E. J. Am. Chem. Soc. 2020, 142, 3814.
[62]
Fernandez, M.; Woo, T. K.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2013, 117, 7681.
[63]
Gülsoy, Z.; Sezginel, K. B.; Uzun, A.; Keskin, S.; Yıldırım, R. ACS Comb. Sci. 2019, 21, 257.
[64]
Hu, J. H.; Zhao, J. F.; Yan, T. Y. J. Phys. Chem. C 2015, 119, 2010.
Outlines

/