Template-Based Controlled Synthesis and Bioapplication of AgInSe2:Zn2+ Near-Infrared Luminescent Quantum Dots※
Received date: 2021-12-30
Online published: 2022-03-01
Supported by
National Natural Science Foundation of China(U1805252); National Natural Science Foundation of China(21975257); National Natural Science Foundation of China(22135008); Natural Science Foundation of Fujian Province(2019I0029); Natural Science Foundation of Fujian Province(2021L3024)
AgInSe2 (AISe) quantum dots (QDs) exhibit large Stokes shift, composition-dependent photoluminescence (PL), long PL lifetimes and low toxicity, making them exceptional candidates in a wide variety of bioapplications. However, it remains notoriously challenging to precisely control both the morphology and composition to optimize the PL performance of AISe QDs via conventional direct synthesis. Herein, we develop the unique low-temperature (75 ℃) template-based synthesis of highly efficient near-infrared (NIR) luminescent AISe QDs from In2Se3 QDs via a facile cation exchange method. The brief synthesis AISe QDs process was as follows: firstly, indium acetate was dissolved in non-coordinating solvent octadecene. Selenium precursor was injected into the above mixture at 200 ℃, followed by nucleation and growth within a few minutes. Thereafter, In2Se3 template QDs can be acquired, and the dispersity of the as-prepared QDs can be improved by adding zinc. Secondly, silver acetate was added to the In2Se3:Zn2+ QDs solution with stirring for 15 min at 75 ℃. Finally, AgInSe2:Zn2+ QDs were obtained. The proposed method enables the as-prepared AISe QDs to inherit the size and morphology of the template QDs. The extent of cation exchange can be controlled by rationally manipulating the Ag/In precursor molar ratio. We successfully regulate the stoichiometry of Ag/In ratio from 0.26 to 1.09. As a result, highly efficient luminescence of AISe QDs with the maximum absolute quantum yield of 42.5% has been achieved, which is higher than that of the AISe counterparts synthesized via the direct method. Moreover, we survey the luminescence mechanism of AISe QDs by means of the steady-state, transient and temperature-dependent spectroscopies. AISe nanoprobes were prepared by coating the hydrophobic QDs with a layer of 1,2-distearoyl-sn-glycero-3-phosphoethanol-amine-N-[biotin(polyethyleneglycol)- 2000] (DSPE-PEG-Biotin) phospholipids through hydrophobic interaction. By virtue of the excellent biocompatibility and intense NIR emission, we exemplify the application of AISe nanoprobes in the targeted cancer cell imaging, thus revealing their promising bioapplications including disease diagnosis and imaging-guided surgery.
Key words: AgInSe2; near-infrared; quantum dots; cation exchange; luminescent nanoprobes
Wei Lian , Zekai Fang , Datao Tu , Jiayao Li , Siyuan Han , Renfu Li , Xiaoying Shang , Xueyuan Chen . Template-Based Controlled Synthesis and Bioapplication of AgInSe2:Zn2+ Near-Infrared Luminescent Quantum Dots※[J]. Acta Chimica Sinica, 2022 , 80(5) : 625 -632 . DOI: 10.6023/A21120606
| [1] | Yoffe, A. D. Adv. Phys. 2001, 50, 1. |
| [2] | Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Nature 2014, 515, 96. |
| [3] | Liu, Y. H.; Zhang, D. X.; Mao, B. D.; Huang, H.; Liu, Y.; Tan, H. Q.; Kang, Z. H. Acta Chim. Sinica 2020, 78, 1349. (in Chinese) |
| [3] | (刘艳红, 张东旭, 毛宝东, 黄慧, 刘阳, 谭华桥, 康振辉, 化学学报, 2020, 78, 1349.) |
| [4] | Xiong, R.; Yu, S. T.; Smith, M. J.; Zhou, J.; Krecker, M.; Zhang, L. J.; Nepal, D.; Bunning, T. J.; Tsukruk, V. V. ACS Nano 2019, 13, 9074. |
| [5] | Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4, 435. |
| [6] | Li, Y.; Li, J. H.; Xu, L. M.; Chen, J. W.; Song, J. Z. Acta Chim. Sinica 2021, 79, 126. (in Chinese) |
| [6] | (李严, 李金航, 许蕾梦, 陈嘉伟, 宋继中, 化学学报, 2021, 79, 126.) |
| [7] | Meinardi, F.; McDaniel, H.; Carulli, F.; Colombo, A.; Velizhanin, K. A.; Makarov, N. S.; Simonutti, R.; Klimov, V. I.; Brovelli, S. Nat. Nanotechnol. 2015, 10, 878. |
| [8] | Yu, M.; Zhang, Z. J.; Zhu, G. W.; Gu, Z. H.; Duan, Y. L.; Yu, L. C.; Gao, G. B.; Sun, T. L. Acta Chim. Sinica 2021, 79, 1281. (in Chinese) |
| [8] | (余梦, 张子俊, 朱国委, 谷振华, 段玉霖, 余良翀, 高冠斌, 孙涛垒, 化学学报, 2021, 79, 1281.) |
| [9] | Niu, Y.; Pu, C. D.; Lai, R. C.; Meng, R. Y.; Lin, W. Z.; Qin, H. Y.; Peng, X. G. Nano Res. 2017, 10, 1149. |
| [10] | Fan, G. Y.; Wang, C. Y.; Fang, J. Y. Nano Today 2014, 9, 69. |
| [11] | Chen, Y. Y.; Li, S. J.; Huang, L. J.; Pan, D. C. Inorg. Chem. 2013, 52, 7819. |
| [12] | Li, Q.; Zhang, T.; Gu, H. W.; Ding, F. Z.; Qu, F.; Peng, X. Y.; Wang, H. Y.; Wu, Z. P. Acta Chim. Sinica 2013, 71, 929. (in Chinese) |
| [12] | 李谦, 张腾, 古宏伟, 丁发柱, 屈飞, 彭星煜, 王洪艳, 吴战鹏, 化学学报, 2013, 71, 929.) |
| [13] | Xie, R. G.; Rutherford, M.; Peng, X. G. J. Am. Chem. Soc. 2009, 131, 5691. |
| [14] | Regulacio, M. D.; Han, M. Y. Acc. Chem. Res. 2016, 49, 511. |
| [15] | Jain, S.; Bharti, S.; Bhullar, G. K.; Tripathi, S. K. J. Lumin. 2020, 219, 116912. |
| [16] | Feng, L.; Liang, X. J.; Yang, F.; Zhong, J. S.; Wang, Y.; Xiang, W. D. Acta Chim. Sinica 2011, 69, 2870. (in Chinese) |
| [16] | (冯丽, 梁晓娟, 杨帆, 钟家松, 王芸, 向卫东, 化学学报, 2011, 69, 2870.) |
| [17] | Zhong, H. Z.; Bai, Z. L.; Zou, B. S. J. Phys. Chem. Lett. 2012, 3, 3167. |
| [18] | Pathak, D.; Wagner, T.; Subrt, J.; Kupcik, J. Can. J. Phys. 2014, 92, 789. |
| [19] | Yarema, O.; Yarema, M.; Wood, V. Chem. Mater. 2018, 30, 1446. |
| [20] | Kameyama, T.; Douke, Y.; Shibakawa, H.; Kawaraya, M.; Segawa, H.; Kuwabata, S.; Torimoto, T. J. Phys. Chem. C 2014, 118, 29517. |
| [21] | Zacharia, A.; Papagiorgis, P.; Yarema, O.; Moser, A.; Othonos, A.; Luisier, M.; Wood, V.; Yarema, M.; Itskos, G. ACS Appl. Nano Mater. 2021, 4, 11239. |
| [22] | Deng, D. W.; Qu, L. Z.; Gu, Y. Q. J. Mater. Chem. C 2014, 2, 7077. |
| [23] | De Trizio, L.; Manna, L. Chem. Rev. 2016, 116, 10852. |
| [24] | Gu, J.; Ding, Y.; Ke, J.; Zhang, Y. W.; Yan, C. H. Acta Chim. Sinica 2013, 71, 360. (in Chinese) |
| [24] | (顾均, 丁祎, 柯俊, 张亚文, 严纯华, 化学学报, 2013, 71, 360.) |
| [25] | Tappan, B. A.; Horton, M. K.; Brutchey, R. L. Chem. Mater. 2020, 32, 2935. |
| [26] | Langevin, M. A.; Ritcey, A. M.; Ni Allen, C. ACS Nano 2014, 8, 3476. |
| [27] | Zhou, Y.; Wu, D.; Zhu, Y. H.; Cho, Y. J.; He, Q.; Yang, X.; Herrera, K.; Chu, Z. D.; Han, Y.; Downer, M. C.; Peng, H. L.; Lai, K. J. Nano Lett. 2017, 17, 5508. |
| [28] | Han, G.; Chen, Z. G.; Drennan, J.; Zou, J. Small 2014, 10, 2747. |
| [29] | Chen, B. K.; Chang, S.; Li, D. Y.; Chen, L. L.; Wang, Y. T.; Chen, T.; Zou, B. S.; Zhong, H. Z.; Rogach, A. L. Chem. Mater. 2015, 27, 5949. |
| [30] | Li, X.; Tu, D. T.; Yu, S. H.; Song, X. R.; Lian, W.; Wei, J. J.; Shang, X. Y.; Li, R. F.; Chen, X. Y. Nano Res. 2019, 12, 1804. |
| [31] | Yao, J. K.; Lifante, J.; Rodriguez-Sevilla, P.; de la Fuente-fernandez, M.; Sanz-Rodriguez, F.; Ortgies, D. H.; Calderon, O. G.; Melle, S.; Ximendes, E.; Jaque, D.; Marin, R. Small 2021, 17, 2103505. |
| [32] | Sousa, F. L. N.; Souza, B. A. S.; Jesus, A. C. C.; Azevedo, W. M.; Mansur, H. S.; Freitas, D. V.; Navarro, M. Green Chem. 2020, 22, 1239. |
| [33] | Kang, X. J.; Yang, Y. C.; Huang, L. J.; Tao, Y.; Wang, L.; Pan, D. C. Green Chem. 2015, 17, 4482. |
| [34] | Luo, H.; Guo, S. H.; Zhang, Y. B.; Bu, K. J.; Lin, H. R.; Wang, Y. Q.; Yin, Y. F.; Zhang, D. Z.; Jin, S. Y.; Zhang, W. Q.; Yang, W. G.; Ma, B. W.; Lu, X. J. Adv. Sci. 2021, 8, 2100786. |
| [35] | Lian, W.; Tu, D. T.; Hu, P.; Song, X. R.; Gong, Z. L.; Chen, T.; Song, J. B.; Chen, Z.; Chen, X. Y. Nano Today 2020, 35, 100943. |
| [36] | Hamanaka, Y.; Ogawa, T.; Tsuzuki, M.; Kuzuya, T. J. Phys. Chem. C 2011, 115, 1786. |
| [37] | Hu, J. H.; Song, J. L. Q.; Tang, Z. S.; Li, H.; Chen, L.; Zhou, R. J. Mater. Chem. C 2020, 8, 5821. |
| [38] | Knowles, K. E.; Hartstein, K. H.; Kilburn, T. B.; Marchioro, A.; Nelson, H. D.; Whitham, P. J.; Gamelin, D. R. Chem. Rev. 2016, 116, 10820. |
| [39] | Gao, Y.; Li, R. F.; Zheng, W.; Shang, X. Y.; Wei, J. J.; Zhang, M. R.; Xu, J.; You, W. W.; Chen, Z.; Chen, X. Y. Chem. Sci. 2019, 10, 5452. |
/
| 〈 |
|
〉 |