Review

Macromolecular Effects in Medicinal Chemistry

  • Jiayu Zhao ,
  • Wantong Song ,
  • Zhaohui Tang ,
  • Xuesi Chen
Expand
  • a Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
    b University of Science and Technology of China, Hefei 230026, China
    c Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
* E-mail: ; Tel.: 0431-85262518; Fax: 0431-85262116

Received date: 2021-12-30

  Online published: 2022-03-04

Supported by

National Natural Science Foundation of China(51973215); National Natural Science Foundation of China(52003268); National Natural Science Foundation of China(51829302); National Natural Science Foundation of China(51833010); Youth Innovation Promotion Association CAS(2020232)

Abstract

Drugs can be roughly divided into small molecule drugs (naturally extracted or chemically synthesized) and macromolecular drugs (biologics) according to molecular weight. Although small molecule drugs are still the mainstay of drug research and development (R&D) at present, the slow update rate of small molecule libraries has retained their R&D speed, thus highlighting the increasingly important position of macromolecular drugs in the future pharmaceutical market. In addition to macromolecular biologics, chemically synthesized macromolecular drugs prepared by combining small molecule drugs with natural or synthetic macromolecules have received more and more attention in recent years. Due to the unique characteristic of abundant backbone architectures and spatial framework of macromolecules, including their distinctive backbone effect and multivalent effect, as well as aggregation effect and targeting effect produced by molecular assembly, many new possibilities will be introduced into the design of medicinal chemistry. In view of this, this review will briefly introduce macromolecular effects in medicinal chemistry design, with an emphasis on new performances and functions introduced in drug design based on the backbone effects, multivalent effects, aggregation effects, and targeting effects of synthetic macromolecules. We hope this review could promote the development of chemically synthesized macromolecular drugs and provide new horizons for medicinal chemistry design.

Cite this article

Jiayu Zhao , Wantong Song , Zhaohui Tang , Xuesi Chen . Macromolecular Effects in Medicinal Chemistry[J]. Acta Chimica Sinica, 2022 , 80(4) : 563 -569 . DOI: 10.6023/A21120602

References

[1]
Wong, H. N. C. Innovation (N Y) 2021, 2, 100086.
[2]
Kwon, Y.; Kang, S.; Choi, Y. S.; Kim, I. Sci. Rep. 2021, 11, 17304.
[3]
Dong, S.; Ma, S.; Liu, Z. L.; Ma, L.-L.; Zhang, Y.; Tang, Z. H.; Deng, M. X.; Song, W. T. Chin. J. Polym. Sci. 2021, 39, 865.
[4]
Ma, Y.; Yang, H. M.; Chen, Z. H.; Li, Y. N.; Li, J. F.; Sun, X. L.; Wang, X. Y.; Tang, Y. Polym. Chem. 2021, 12, 6606.
[5]
Lin, M. H.; Hung, C. F.; Hsu, C. Y.; Lin, Z. C.; Fang, J. Y. Future Med. Chem. 2019, 11, 2131.
[6]
Zhou, K.; Zhu, Y.; Chen, X.; Li, L.; Xu, W. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 114, 111006.
[7]
Yang, C.; Xue, Z.; Liu, Y.; Xiao, J.; Chen, J.; Zhang, L.; Guo, J.; Lin, W. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 84, 254.
[8]
Debele, T. A.; Yu, L. Y.; Yang, C. S.; Shen, Y. A.; Lo, C. L. Biomacromolecules 2018, 19, 3725.
[9]
Si, X.; Song, W.; Yang, S.; Ma, L.; Yang, C.; Tang, Z. Macromol. Biosci. 2020, 20, e2000243.
[10]
Ma, S.; Song, W.; Xu, Y.; Si, X.; Lv, S.; Zhang, Y.; Tang, Z.; Chen, X. Nano Lett. 2020, 20, 2514.
[11]
Chen, D.; Zhang, G.; Li, Q.; Guan, M.; Wang, X.; Zou, T.; Zhang, Y.; Shu, C.; Hong, H.; Wan, L. J. Am. Chem. Soc. 2018, 140, 7373.
[12]
Zhang, L.; Chen, Q.; Wang, J. Acta Chim. Sinica 2020, 78, 642. (in Chinese)
[12]
(张留伟, 陈麒先, 王静云, 化学学报, 2020, 78, 642.)
[13]
Ma, S.; Song, W.; Xu, Y.; Si, X.; Zhang, Y.; Tang, Z.; Chen, X. CCS Chemistry 2020, 2, 390.
[14]
Zhang, J.; Wu, L.; Meng, F.; Wang, Z.; Deng, C.; Liu, H.; Zhong, Z. Langmuir 2012, 28, 2056.
[15]
Chen, W.; Zhong, P.; Meng, F.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. J. Control. Release 2013, 169, 171.
[16]
Ma, S.; Song, W.; Xu, Y.; Si, X.; Zhang, D.; Lv, S.; Yang, C.; Ma, L.; Tang, Z.; Chen, X. Biomaterials 2020, 232, 119676.
[17]
Si, X.; Ma, S.; Xu, Y.; Zhang, D.; Shen, N.; Yu, H.; Zhang, Y.; Song, W.; Tang, Z.; Chen, X. J. Control. Release 2020, 320, 83.
[18]
Cheng, R.; Meng, F.; Deng, C.; Klok, H. A.; Zhong, Z. Biomaterials 2013, 34, 3647.
[19]
Tu, L.; Liao, Z.; Luo, Z.; Wu, Y. L.; Herrmann, A.; Huo, S. Exploration 2021, 1, 20210023.
[20]
Zhao, J.; Ma, S.; Xu, Y.; Si, X.; Yao, H.; Huang, Z.; Zhang, Y.; Yu, H.; Tang, Z.; Song, W.; Chen, X. Biomaterials 2021, 268, 120542.
[21]
Tang, J. C.; Huang, K. L.; Yu, J. G.; Liu, S. Q. Acta Chim. Sinica 2008, 66, 541. (in Chinese)
[21]
(唐金春, 黄可龙, 于金刚, 刘素琴, 化学学报, 2008, 66, 541.)
[22]
Dahlman, J. E.; Kauffman, K. J.; Xing, Y.; Shaw, T. E.; Mir, F. F.; Dlott, C. C.; Langer, R.; Anderson, D. G.; Wang, E. T. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 2060.
[23]
Choi, K. Y.; Chung, H.; Min, K. H.; Yoon, H. Y.; Kim, K.; Park, J. H.; Kwon, I. C.; Jeong, S. Y. Biomaterials 2010, 31, 106.
[24]
Dai, Q.; Wilhelm, S.; Ding, D.; Syed, A. M.; Sindhwani, S.; Zhang, Y.; Chen, Y. Y.; MacMillan, P.; Chan, W. C. W. ACS Nano 2018, 12, 8423.
[25]
Kunjachan, S.; Pola, R.; Gremse, F.; Theek, B.; Ehling, J.; Moeckel, D.; Hermanns-Sachweh, B.; Pechar, M.; Ulbrich, K.; Hennink, W. E.; Storm, G.; Lederle, W.; Kiessling, F.; Lammers, T. Nano Lett. 2014, 14, 972.
[26]
Bandyopadhyay, A.; Fine, R. L.; Demento, S.; Bockenstedt, L. K.; Fahmy, T. M. Biomaterials 2011, 32, 3094.
[27]
Yuan, H.; Jiang, W.; von Roemeling, C. A.; Qie, Y.; Liu, X.; Chen, Y.; Wang, Y.; Wharen, R. E.; Yun, K.; Bu, G.; Knutson, K. L.; Kim, B. Y. S. Nat. Nanotechnol. 2017, 12, 763.
[28]
Song, W. T.; Tang, Z. H.; Zhang, D. W.; Li, M. Q.; Gu, J. K.; Chen, X. S. Chem. Sci. 2016, 7, 728.
[29]
Wang, J.; Hao, H.; Wang, Y.; Zhao, T.; Guan, X.; Wang, K. Polym. Bull. 2011, 1, 9. (in Chinese)
[29]
(王君莲, 郝红, 王扬, 赵涛, 管晓玉, 王凯, 高分子通报, 2011, 1, 9.)
[30]
Kalafati, L.; Kourtzelis, I.; Schulte-Schrepping, J.; Li, X.; Hatzioannou, A.; Grinenko, T.; Hagag, E.; Sinha, A.; Has, C.; Dietz, S.; de Jesus Domingues, A. M.; Nati, M.; Sormendi, S.; Neuwirth, A.; Chatzigeorgiou, A.; Ziogas, A.; Lesche, M.; Dahl, A.; Henry, I.; Subramanian, P.; Wielockx, B.; Murray, P.; Mirtschink, P.; Chung, K. J.; Schultze, J. L.; Netea, M. G.; Hajishengallis, G.; Verginis, P.; Mitroulis, I.; Chavakis, T. Cell 2020, 183, 771.
[31]
Carroll, E. C.; Jin, L.; Mori, A.; Munoz-Wolf, N.; Oleszycka, E.; Moran, H. B. T.; Mansouri, S.; McEntee, C. P.; Lambe, E.; Agger, E. M.; Andersen, P.; Cunningham, C.; Hertzog, P.; Fitzgerald, K. A.; Bowie, A. G.; Lavelle, E. C. Immunity 2016, 44, 597.
[32]
Chen, X.; Chen, Y.; Li, S.; Chen, Y.; Lan, J.; Liu, L. Carbohydr. Polym. 2009, 77, 389.
[33]
Luo, M.; Wang, H.; Wang, Z.; Cai, H.; Lu, Z.; Li, Y.; Du, M.; Huang, G.; Wang, C.; Chen, X.; Porembka, M. R.; Lea, J.; Frankel, A. E.; Fu, Y. X.; Chen, Z. J.; Gao, J. Nat. Nanotechnol. 2017, 12, 648.
[34]
Li, S.; Luo, M.; Wang, Z.; Feng, Q.; Wilhelm, J.; Wang, X.; Li, W.; Wang, J.; Cholka, A.; Fu, Y. X.; Sumer, B. D.; Yu, H.; Gao, J. Nat. Biomed. Eng. 2021, 5, 455.
[35]
Manna, S.; Howitz, W. J.; Oldenhuis, N. J.; Eldredge, A. C.; Shen, J.; Nihesh, F. N.; Lodoen, M. B.; Guan, Z.; Esser-Kahn, A. P. ACS Cent. Sci. 2018, 4, 982.
[36]
Fan, Z.; Jan, S.; Hickey, J. C.; Davies, D. H.; Felgner, J.; Felgner, P. L.; Guan, Z. Biomacromolecules 2021, 22, 5074.
[37]
Li, Y.; Wang, Z.; Tang, Z. Acta Chim. Sinica 2022, 80, 291. (in Chinese)
[37]
(李嫣然, 王子贵, 汤朝晖, 化学学报, 2022, 80, 291.)
[38]
Langer, C. J.; Facp, M.; Byrne, K. J. J. Thorac. Oncol. 2008, 3, 623.
[39]
Schluep, T.; Hwang, J.; Cheng, J.; Heidel, J. D.; Bartlett, D. W.; Hollister, B.; Davis, M. E. Clin. Cancer Res. 2006, 12, 1606.
[40]
Numbenjapon, T.; Wang, J.; Colcher, D.; Schluep, T.; Davis, M. E.; Duringer, J.; Kretzner, L.; Yen, Y.; Forman, S. J.; Raubitschek, A. Clin. Cancer Res. 2009, 15, 4365.
[41]
Koizumi, F.; Kitagawa, M.; Negishi, T.; Onda, T.; Matsumoto, S.; Hamaguchi, T.; Matsumura, Y. Cancer Res. 2006, 66, 10048.
[42]
Alami, N.; Banerjee, K.; Juste, S.; Page, V.; Brossard, M.; Hayashi, T.; Igarashi, E.; Leyland-Jones, B. AACR 2006, 1, 133.
[43]
Zhang, Y.; Ma, S.; Liu, X.; Xu, Y.; Zhao, J.; Si, X.; Li, H.; Huang, Z.; Wang, Z.; Tang, Z.; Song, W.; Chen, X. Adv. Mater. 2021, 33, e2007293.
[44]
Lynn, G. M.; Laga, R.; Darrah, P. A.; Ishizuka, A. S.; Balaci, A. J.; Dulcey, A. E.; Pechar, M.; Pola, R.; Gerner, M. Y.; Yamamoto, A.; Buechler, C. R.; Quinn, K. M.; Smelkinson, M. G.; Vanek, O.; Cawood, R.; Hills, T.; Vasalatiy, O.; Kastenmuller, K.; Francica, J. R.; Stutts, L.; Tom, J. K.; Ryu, K. A.; Esser-Kahn, A. P.; Etrych, T.; Fisher, K. D.; Seymour, L. W.; Seder, R. A. Nat. Biotechnol. 2015, 33, 1201.
[45]
Lynn, G. M.; Sedlik, C.; Baharom, F.; Zhu, Y.; Ramirez-Valdez, R. A.; Coble, V. L.; Tobin, K.; Nichols, S. R.; Itzkowitz, Y.; Zaidi, N.; Gammon, J. M.; Blobel, N. J.; Denizeau, J.; de la Rochere, P.; Francica, B. J.; Decker, B.; Maciejewski, M.; Cheung, J.; Yamane, H.; Smelkinson, M. G.; Francica, J. R.; Laga, R.; Bernstock, J. D.; Seymour, L. W.; Drake, C. G.; Jewell, C. M.; Lantz, O.; Piaggio, E.; Ishizuka, A. S.; Seder, R. A. Nat. Biotechnol. 2020, 38, 320.
[46]
Zhao, J.; Xu, Y.; Ma, S.; Wang, Y.; Huang, Z.; Qu, H.; Yao, H.; Zhang, Y.; Wu, G.; Huang, L.; Song, W.; Tang, Z.; Chen, X. Adv. Mater. 2022, e2109254.
[47]
Shen, W.; Zhang, Y.; Wan, P.; An, L.; Zhang, P.; Xiao, C.; Chen, X. Adv. Mater. 2020, 32, e2001108.
[48]
Xiong, M.; Han, Z.; Song, Z.; Yu, J.; Ying, H.; Yin, L.; Cheng, J. Angew. Chem. Int. Ed. 2017, 56, 10826.
[49]
Hasirci, V. N.; Holt, P. F. Int. Arch. Occup. Environ. Hlth. 1977, 38, 177.
[50]
Paluck, S. J.; Nguyen, T. H.; Maynard, H. D. Biomacromolecules 2016, 17, 3417.
[51]
Pouyan, P.; Nie, C.; Bhatia, S.; Wedepohl, S.; Achazi, K.; Osterrieder, N.; Haag, R. Biomacromolecules 2021, 22, 1545.
[52]
Vance, D.; Shah, M.; Joshi, A.; Kane, R. S. Biotechnol. Bioeng. 2008, 101, 429.
[53]
Joshi, A.; Vance, D.; Rai, P.; Thiyagarajan, A.; Kane, R. S. Chemistry 2008, 14, 7738.
[54]
Lee, Y. C.; Lee, R. T. Acc. Chem. Res. 2002, 28, 321.
[55]
Toone, J. J. L. a. E. J. Chem. Rev. 2002, 102, 555.
[56]
Hudak, J. E.; Canham, S. M.; Bertozzi, C. R. Nat. Chem. Biol. 2014, 10, 69.
[57]
Hong, S.; Yu, C.; Rodrigues, E.; Shi, Y.; Chen, H.; Wang, P.; Chapla, D. G.; Gao, T.; Zhuang, R.; Moremen, K. W.; Paulson, J. C.; Macauley, M. S.; Wu, P. ACS Cent. Sci. 2021, 7, 1338.
[58]
Delaveris, C. S.; Chiu, S. H.; Riley, N. M.; Bertozzi, C. R. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2012408118.
[59]
Delaveris, C. S.; Wilk, A. J.; Riley, N. M.; Stark, J. C.; Yang, S. S.; Rogers, A. J.; Ranganath, T.; Nadeau, K. C.; Stanford, C.-B.; Blish, C. A.; Bertozzi, C. R. ACS Cent. Sci. 2021, 7, 650.
[60]
Su, L.; Zhang, W.; Wu, X.; Zhang, Y.; Chen, X.; Liu, G.; Chen, G.; Jiang, M. Small 2015, 11, 4191.
[61]
Wu, L.; Zhang, Y.; Li, Z.; Yang, G.; Kochovski, Z.; Chen, G.; Jiang, M. J. Am. Chem. Soc. 2017, 139, 14684.
[62]
Papp, I.; Sieben, C.; Sisson, A. L.; Kostka, J.; Bottcher, C.; Ludwig, K.; Herrmann, A.; Haag, R. ChemBioChem 2011, 12, 887.
[63]
Nie, C.; Parshad, B.; Bhatia, S.; Cheng, C.; Stadtmuller, M.; Oehrl, A.; Kerkhoff, Y.; Wolff, T.; Haag, R. Angew. Chem. Int. Ed. 2020, 59, 15532.
[64]
Rodriguez-Perez, L.; Ramos-Soriano, J.; Perez-Sanchez, A.; Illescas, B. M.; Munoz, A.; Luczkowiak, J.; Lasala, F.; Rojo, J.; Delgado, R.; Martin, N. J. Am. Chem. Soc. 2018, 140, 9891.
[65]
Ramos-Soriano, J.; Reina, J. J.; Illescas, B. M.; de la Cruz, N.; Rodriguez-Perez, L.; Lasala, F.; Rojo, J.; Delgado, R.; Martin, N. J. Am. Chem. Soc. 2019, 141, 15403.
[66]
Illescas, B. M.; Rojo, J.; Delgado, R.; Martin, N. J. Am. Chem. Soc. 2017, 139, 6018.
[67]
Cai, H.; Sun, Z. Y.; Chen, M. S.; Zhao, Y. F.; Kunz, H.; Li, Y. M. Angew. Chem. Int. Ed. 2014, 53, 1699.
[68]
Cuesta, A. M.; Sainz-Pastor, N.; Bonet, J.; Oliva, B.; Alvarez-Vallina, L. Trends Biotechnol. 2010, 28, 355.
[69]
Johnson, R. N.; Kopecˇkova´, P.; Kopecˇek, J. Bioconjugate Chem. 2009, 20, 129.
[70]
Zhang, N.; Khawli, L. A.; Hu, P.; Epstein, A. L. Clin Cancer Res. 2005, 11, 5971.
[71]
Xie, J.; Wang, J.; Chen, H.; Shen, W.; Sinko, P. J.; Dong, H.; Zhao, R.; Lu, Y.; Zhu, Y.; Jia, L. Sci. Rep. 2015, 5, 9445.
[72]
Martin, J. T.; Douaisi, M.; Arsiwala, A.; Arha, M.; Kane, R. S. Int. J. Nanomedicine 2018, 13, 5249.
[73]
Vorobyeva, M.; Vorobjev, P.; Venyaminova, A. Molecules 2016, 21, 1613.
[74]
Hong, Y.; Lamab, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361.
[75]
Liu, S.; Cai, X.; Wu, J.; Cong, Q.; Chen, X.; Li, T.; Du, F.; Ren, J.; Wu, Y. T.; Grishin, N. V.; Chen, Z. J. Science 2015, 347, aaa2630.
[76]
Li, L. L.; Qiao, Z. Y.; Wang, L.; Wang, H. Adv. Mater. 2019, 31, e1804971.
[77]
Yang, P. P.; Luo, Q.; Qi, G. B.; Gao, Y. J.; Li, B. N.; Zhang, J. P.; Wang, L.; Wang, H. Adv. Mater. 2017, 29, 1605869.
[78]
Cheng, D. B.; Wang, D.; Gao, Y. J.; Wang, L.; Qiao, Z. Y.; Wang, H. J. Am. Chem. Soc. 2019, 141, 4406.
[79]
Zhang, X. H.; Cheng, D. B.; Ji, L.; An, H. W.; Wang, D.; Yang, Z. X.; Chen, H.; Qiao, Z. Y.; Wang, H. Nano Lett. 2020, 20, 1286.
[80]
Zhang, L.; Jing, D.; Jiang, N.; Rojalin, T.; Baehr, C. M.; Zhang, D.; Xiao, W.; Wu, Y.; Cong, Z.; Li, J. J.; Li, Y.; Wang, L.; Lam, K. S. Nat. Nanotechnol. 2020, 15, 145.
[81]
Jiang, C. T.; Chen, K. G.; Liu, A.; Huang, H.; Fan, Y. N.; Zhao, D. K.; Ye, Q. N.; Zhang, H. B.; Xu, C. F.; Shen, S.; Xiong, M. H.; Du, J. Z.; Yang, X. Z.; Wang, J. Nat. Commun. 2021, 12, 1359.
[82]
Mi, Y.; Smith, C. C.; Yang, F.; Qi, Y.; Roche, K. C.; Serody, J. S.; Vincent, B. G.; Wang, A. Z. Adv. Mater. 2018, 30, e1706098.
[83]
Veneziano, R.; Moyer, T. J.; Stone, M. B.; Wamhoff, E. C.; Read, B. J.; Mukherjee, S.; Shepherd, T. R.; Das, J.; Schief, W. R.; Irvine, D. J.; Bathe, M. Nat. Nanotechnol. 2020, 15, 716.
[84]
Vargason, A. M.; Anselmo, A. C.; Mitragotri, S. Nat. Biomed. Eng. 2021, 5, 951.
[85]
Das, R. P.; Gandhi, V. V.; Singh, B. G.; Kunwar, A. Curr. Pharm. Des. 2019, 25, 3034.
[86]
Groves, E.; Dart, A. E.; Covarelli, V.; Caron, E. Cell Mol. Life Sci. 2008, 65, 1957.
[87]
Vonarbourg, A.; Passirani, C.; Saulnier, P.; Benoit, J. P. Biomaterials 2006, 27, 4356.
[88]
Uster, P. S.; Working, P. K.; Vaage, J. Int. J. Pharm. 1998, 162, 77.
[89]
Gradishar, W. J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O'Shaughnessy, J. J. Clin. Oncol. 2005, 23, 7794.
[90]
Bugno, J.; Poellmann, M. J.; Sokolowski, K.; Hsu, H. J.; Kim, D. H.; Hong, S. Nanomedicine 2019, 21, 102059.
[91]
Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M.; Nishiyama, N.; Kataoka, K. Nat. Nanotechnol. 2011, 6, 815.
[92]
Ji, J.; Ma, F.; Zhang, H.; Liu, F.; He, J.; Li, W.; Xie, T.; Zhong, D.; Zhang, T.; Tian, M.; Zhang, H.; Santos, H. A.; Zhou, M. Adv. Funct. Mater. 2018, 28, 1801738.
[93]
Wang, H.; Wang, S.; Su, H.; Chen, K. J.; Armijo, A. L.; Lin, W. Y.; Wang, Y.; Sun, J.; Kamei, K.; Czernin, J.; Radu, C. G.; Tseng, H. R. Angew. Chem. Int. Ed. 2009, 48, 4344.
[94]
Miller, J. B.; Zhang, S.; Kos, P.; Xiong, H.; Zhou, K.; Perelman, S. S.; Zhu, H.; Siegwart, D. J. Angew. Chem. Int. Ed. 2017, 56, 1059.
[95]
Kranz, L. M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K. C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H.; Grunwitz, C.; Vormehr, M.; Husemann, Y.; Selmi, A.; Kuhn, A. N.; Buck, J.; Derhovanessian, E.; Rae, R.; Attig, S.; Diekmann, J.; Jabulowsky, R. A.; Heesch, S.; Hassel, J.; Langguth, P.; Grabbe, S.; Huber, C.; Tureci, O.; Sahin, U. Nature 2016, 534, 396.
[96]
Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L. T.; Dilliard, S. A.; Siegwart, D. J. Nat. Nanotechnol. 2020, 15, 313.
[97]
Zhou, Q.; Shao, S.; Wang, J.; Xu, C.; Xiang, J.; Piao, Y.; Zhou, Z.; Yu, Q.; Tang, J.; Liu, X.; Gan, Z.; Mo, R.; Gu, Z.; Shen, Y. Nat. Nanotechnol. 2019, 14, 799.
[98]
Wang, G.; Wu, B.; Li, Q.; Chen, S.; Jin, X.; Liu, Y.; Zhou, Z.; Shen, Y.; Huang, P. Small 2020, 16, e2004172.
[99]
Wang, Y.; Shen, N.; Wang, Y.; Zhang, Y.; Tang, Z.; Chen, X. Adv. Mater. 2021, 33, e2002094.
[100]
Xia, X.; Yang, X.; Huang, W.; Xia, X.; Yan, D. Nanomicro Lett. 2021, 14, 33.
[101]
Sakamoto, K. M.; Kim, K. B.; Kumagai, A.; Mercurio, F.; Crews, C. M.; Deshaies, R. J. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 8554.
Outlines

/