Article

A Dual Post-Treatment Method for Improving the Performance of Ternary NiMgO Semiconductor Interfacial Layers and Their Organic Solar Cells

  • Xinrui He ,
  • Lina Cai ,
  • Hansheng Chen ,
  • Pan Yin ,
  • Zhigang Yin ,
  • Qingdong Zheng
Expand
  • a College of Chemistry, Fuzhou University, Fuzhou 350108
    b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002
    c Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2021-12-31

  Online published: 2022-03-10

Supported by

Natural Science Foundation of Fujian Province for Distinguished Young Scholars(2019J06023); National Natural Science Foundation of China(52130306); National Natural Science Foundation of China(52173241); Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China(2021ZR116)

Abstract

Organic solar cells (OSCs) are among the most promising photovoltaic technologies to solve energy and environmental problems. To achieve highly efficient OSCs, controlling over electrode interfacial layers is greatly important for improving charge transportation and collection. Here, ternary metal oxide semiconductor films of Mg-doped NiO (NiMgO) have been prepared via a sol-gel method, and further optimized by several post-treatment strategies. The structures, properties and energy levels of different NiMgO films have been investigated to explore the influence of various post-treatment strategies. Incorporating the ternary NiMgO films as a novel type of hole transport layers (HTLs), non-fullerene OSCs have been fabricated based on a promising bulk-heterojunction of PM6:M36. Their photovoltaic performances and mechanisms of device physics are also investigated. When the sol-gel derived NiMgO film without post-treatment is used as an HTL, the OSCs show a relatively low power conversion efficiency (PCE) of 5.90%. By contrast, after simple ultraviolet-ozone (UVO) post-treatment on the NiMgO HTL, the resulted OSCs exhibit greatly enhanced photovoltaic performances, with an increased open-circuit voltage (VOC) of 0.87 V and an improved PCE of 12.67%. More importantly, a new dual post-treatment combining surface rinse with UVO treatment has been demonstrated to further optimize NiMgO HTLs and improve device performances. The rinse process can remove excess impurities and flatten the surface of NiMgO films as well as increase the transmittance, while the UVO treatment process is beneficial for reducing surface defects of the ternary oxide films. Benefit-ing from such an efficient dual post-treatment on NiMgO HTLs, the OSCs afford a high PCE of 13.17% with a retained VOC of 0.87 V, an increased short-circuit current density of 23.48 mA•cm–2, and an improved fill factor of 64.29%. These results provide an effective way for surface post-treatment and property optimization of semiconducting metal oxide films, and contribute to the development of high-performance optoelectronic devices.

Cite this article

Xinrui He , Lina Cai , Hansheng Chen , Pan Yin , Zhigang Yin , Qingdong Zheng . A Dual Post-Treatment Method for Improving the Performance of Ternary NiMgO Semiconductor Interfacial Layers and Their Organic Solar Cells[J]. Acta Chimica Sinica, 2022 , 80(5) : 581 -589 . DOI: 10.6023/A21120622

References

[1]
Wang, F.; Harindintwali, J. D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; Chang, S. X.; Zhang, L.; Rinklebe, J.; Yuan, Z.; Zhu, Q.; Xiang, L.; Tsang, D.; Xu, L.; Jiang, X.; Liu, J.; Wei, N.; Kästner, M.; Zou, Y.; Ok, Y. S.; Shen, J.; Peng, D.; Zhang, W.; Barceló, D.; Zhou, Y.; Bai, Z.; Li, B.; Zhang, B.; Wei, K.; Cao, H.; Tan, Z.; Zhao, L.; He, X.; Zheng, J.; Bolan, N.; Liu, X.; Huang, C.; Dietmann, S.; Luo, M.; Sun, N.; Gong, J.; Gong, Y.; Brahushi, F.; Zhang, T.; Xiao, C.; Li, X.; Chen, W.; Jiao, N.; Lehmann, J.; Zhu, Y.; Jin, H.; Schäffer, A.; Tiedje, J. M.; Chen, J. M. The Innovation 2021, 2, 100180.
[2]
Classen, A.; Chochos, C. L.; Lüer, L.; Gregoriou, V. G.; Wortmann, J.; Osvet, A.; Forberich, K.; McCulloch, I.; Heumüller, T.; Brabec, C. J. Nat. Energy 2020, 5, 711.
[3]
Wang, W.; Wang, J.; Zheng, Z.; Hou, J. Acta Chim. Sinica 2020, 78, 382. (in Chinese)
[3]
(王文璇, 王建邱, 郑众, 侯剑辉, 化学学报, 2020, 78, 382.)
[4]
Lv, M.; Zhou, R.; Lv, K.; Wei, Z. Acta Chim. Sinica 2021, 79, 284. (in Chinese)
[4]
(吕敏, 周瑞敏, 吕琨, 魏志祥, 化学学报, 2021, 79, 284.)
[5]
Guo, X.; Cui, C.; Zhang, M.; Huo, L.; Huang, Y.; Hou, J.; Li, Y. Energy Environ. Sci. 2012, 5, 7943.
[6]
Yu, G.; Gao, J.; Hummelen, J. C.; Wudi, F.; Heeger, A. J. Science 1995, 270, 1789.
[7]
Yin, Z.; Zheng, Q.; Chen, S.; Cai, D.; Ma, Y. Adv. Energy Mater. 2016, 6, 1501493.
[8]
Yin, Z.; Wei, J.; Chen, S.; Cai, D.; Ma, Y.; Wang, M.; Zheng, Q. J. Mater. Chem. A 2017, 5, 3888.
[9]
Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Nat. Energy 2016, 1, 15027
[10]
Lin, Y.; Wang, J.; Zhang, Z.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170.
[11]
Li, T.; Zhan, X. Acta Chim. Sinica 2021, 79, 257. (in Chinese)
[11]
(李腾飞, 占肖卫, 化学学报, 2021, 79, 257.)
[12]
Zhang, J.; Tan, H.; Guo, X.; Facchetti, A.; Yan, H. Nat. Energy 2018, 3, 720.
[13]
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.; Lau, T.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Joule 2019, 3, 1140.
[14]
Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y. Nat. Energy 2021, 6, 605.
[15]
Ma, Y.; Cai, D.; Wan, S.; Yin, P.; Wang, P.; Lin, W.; Zheng, Q. Natl. Sci. Rev. 2020, 7, 1886.
[16]
Tang, C.; Ma, X.; Wang, J.; Zhang, X.; Liao, R.; Ma, Y.; Wang, P.; Wang, P.; Wang, T.; Zhang, F.; Zheng, Q. Angew. Chem., Int. Ed. 2021, 60, 19314.
[17]
Liu, Y.; Liu, B.; Ma, C.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z.; Bo, Z. Sci. China: Chem. 2022, 65, 224.
[18]
Yin, Z.; Wei, J.; Zheng, Q. Adv. Sci. 2016, 3, 1500362.
[19]
Ma, C.; Fu, W.; Huang, G.; Chen, H.; Xu, M. Acta Chim. Sinica 2015, 73, 949. (in Chinese)
[19]
(马春燕, 傅伟飞, 黄国伟, 陈红征, 徐明生, 化学学报, 2015, 73, 949.)
[20]
Guang, S.; Yu, J.; Wang, H.; Liu, X.; Qu, S.; Zhu, R.; Tang, W. J. Energy Chem. 2021, 56, 496.
[21]
Zhang, C.; Luo, Q.; Wu, H.; Li, H.; Lai, J.; Ji, G.; Yan, L.; Wang, X.; Zhang, D.; Lin, J.; Chen, L.; Yang, J.; Ma, C. Org. Electron. 2017, 45, 190.
[22]
Yip, H.; Jen, A. Energy Environ. Sci. 2012, 5, 5994.
[23]
Liu, J.; Xue, Y.; Gao, Y.; Yu, D.; Durstock, M.; Dai, L. Adv. Mater. 2012, 24, 2228.
[24]
Yin, Z.; Zheng, Q.; Chen, S.; Cai, D. ACS Appl. Mater. Interfaces 2013, 5, 9015.
[25]
Lou, Y. H.; Wang, Z. K. Nanoscale 2017, 9, 13506.
[26]
Zhan, T.; Ren, P.; Huang, X.; Zhang, X.; Chen, G.; Xiong, J.; Xue, X.; Cai, P.; Zhang, J.; Chen, J. Solar Energy 2021, 216, 211.
[27]
Manders, J. R.; Tsang, S.; Hartel, H. J.; Lai, T.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Adv. Funct. Mater. 2013, 23, 2993.
[28]
Jiang, F.; Choy, W. C. H.; Li, X.; Zhang, D.; Cheng, J. Adv. Mater. 2015, 27, 2930.
[29]
Hossain, M. A.; Zhang, T.; Zakaria, Y.; Lambert, D.; Burr, P. A.; Rashkeev, S. N.; Abdallah, A.; Hoex, B. IEEE J. Photovolt. 2021, 11, 1176.
[30]
Zhang, J. Y.; Li, W. W.; Hoye, R. L. Z.; Macmanus-Driscoll, J. L.; Budde, M.; Bierwagen, O.; Wang, L.; Du, Y.; Wahila, M. J.; Piper, L. F. J.; Lee, T. L.; Edwards, H. J.; Dhanak, V. R.; Zhang, K. H. L. J. Mater. Chem. C 2018, 6, 2275.
[31]
Denny, Y. R.; Lee, K.; Park, C.; Oh, S. K.; Kang, H. J.; Yang, D.; Seo, S. Thin Solid Films 2015, 591, 255.
[32]
Wang, N.; Liu, C. Q.; Wen, C. Q. L. B.; Wang, H. L.; Liu, S. M.; Jiang, W. W.; Ding, W. Y.; Chai, W. P. Thin Solid Films 2016, 616, 587.
[33]
Huang, S.; Wang, Y.; Shen, S.; Tang, Y.; Yu, A.; Kang, B.; Silva, S. R. P.; Lu, G. J. Colloid Interface Sci. 2019, 535, 308.
[34]
Mares, J. W.; Boutwell, C. R.; Scheurer, A.; Falanga, M.; Schoenfeld, W. V. Proc. SPIE 2010, 7603, 76031B.
[35]
Yin, Z.; Zheng, Q.; Chen, S.; Cai, D.; Zhou, L.; Zhang, J. Adv. Energy Mater. 2014, 4, 1301404.
[36]
Zhai, Z.; Huang, X.; Xu, M.; Yuan, J.; Peng, J.; Ma, W. Adv. Energy Mater. 2013, 3, 1614.
Outlines

/