Article

Circularly Polarized Luminescence and Dynamic Regulation Based on the co-Assembly of L/D-Lysine Hydrochloride and Photoactivated AIE Molecules

  • Xicheng Feng ,
  • Liangliang Zhu ,
  • Bingbing Yue
Expand
  • a School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
    b State Key Laboratory of Molecular Engineering of Polymers,Department of Macromolecular Science, Fudan University, Shanghai 200438, China

Received date: 2022-01-10

  Online published: 2022-03-10

Supported by

Shanghai Sailing Program(20YF1432400); partially from the National Natural Science Foundation of China(22105128)

Abstract

In recent years, chiral materials based on circularly polarized luminescence (CPL) generated by molecular assembly have developed rapidly. However, the overall CPL signal of organic material systems is still weak and lacks precise modulation means. As a non-contact external stimulus, light stimulation has the advantages of precision and speed. Therefore, in this work, hexathiobenzene (M-1) with photoactive aggregation-induced emission (AIE) properties were used as fluorescent dyes, and chiral amino acids L/D-Lysine hydrochloride (L/D-Lys) were used as chiral templates. Supramolecular L/D-Lys@M-1 components are formed by intermolecular hydrogen bonding in a mixed solvent (N,N-dimethylformamide (DMF)/H2O). Specifically, 1 mmol/L M-1 and 6 mmol/L L/D-Lys were dissolved in 700 μL DMF. Next, add 300 μL ultra-pure water to the mixture at 60 ℃ and cool the solution to 25 ℃. Due to the formation of L/D-Lys@M-1 co-assembly, the transparent solution gradually becomes an opaque suspension. The photoluminescence spectra, UV absorption spectra and DLS (dynamic light scattering) were used to characterize the structure and photoluminescence properties of the photoluminescence components. It was found that L/D-Lys@M-1 had self-aggregation effect under the photoluminescence, its particle size increased from ca. 700 nm to ca. 1400 nm, and it produced continuously enhanced emission at 450 nm and 550 nm. The chiral properties of ground state and excited state were studied by CD (circular dichroism) and CPL. The Cotton effect was observed at 250 nm and 300 nm under solvent-induced and light-controlled conditions, and the CD intensity of the L/D-Lys@M-1 co-assembly system increased with prolonged illumination time, indicating that the co-assembly system realized chiral transfer and amplification. CPL spectra indicate that, under the solvent effect of poor solvent H2O, the co-assembly induced CPL signal at 540 nm (M-1 molecule fluorescence emission), luminescent dissymmetry factor (|glum|) 0.3×10-2. This study provides a strategy for CPL construction and dynamic regulation of achiral fluorescence molecules.

Cite this article

Xicheng Feng , Liangliang Zhu , Bingbing Yue . Circularly Polarized Luminescence and Dynamic Regulation Based on the co-Assembly of L/D-Lysine Hydrochloride and Photoactivated AIE Molecules[J]. Acta Chimica Sinica, 2022 , 80(5) : 647 -651 . DOI: 10.6023/A22010015

References

[1]
Addadi, L.; Weiner, S. Nature 2001, 411, 753.
[2]
Gan, Q.; Wang, X.; Kauffmann, B.; Rosu, F.; Ferrand, Y.; Huc, I. Nat. Nanotechnol. 2017, 12, 447.
[3]
Ren, J.; Hu, Y.; Lu, C.-H.; Guo, W.; Aleman-Garcia, M. A.; Ricci, F.; Willner, I. Chem. Sci. 2015, 6, 4190.
[4]
Chen, Z.; Han, Z.; Shi, W.; Cheng, P. Acta Chim. Sinica 2020, 78, 1336. (in Chinese)
[4]
(陈中杭, 韩宗甦, 师唯, 程鹏, 化学学报, 2020, 78, 1336.)
[5]
Zhang, L.; Zhao, W.-L.; Li, M.; Lu, H.-Y.; Chen, C.-F. Acta Chim. Sinica 2020, 78, 1030. (in Chinese)
[5]
(张亮, 赵文龙, 李猛, 吕海燕, 陈传峰, 化学学报, 2020, 78, 1030.)
[6]
Zhang, G.; Palmer, G. M.; Dewhirst, M.; Fraser, C. L. Nat. Mater. 2009, 8, 747.
[7]
Xu, M.; Ma, C.; Zhou, J.; Liu, Y.; Wu, X.; Luo, S.; Li, W.; Yu, H.; Wang, Y.; Chen, Z.; Li, J.; Liu, S. J. Mater. Chem. C 2019, 7, 13794.
[8]
Gu, L.; Shi, H.; Gu, M.; Ling, K.; Ma, H.; Cai, S.; Song, L.; Ma, C.; Li, H.; Xing, G.; Hang, X.; Li, J.; Gao, Y.; Yao, W.; Shuai, Z.; An, Z.; Liu, X.; Huang, W. Angew. Chem. Int. Ed. 2018, 57, 8425.
[9]
Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, (18), 1740.
[10]
Hu, M.; Ye, F.-Y.; Du, C.; Wang, W.; Yu, W.; Liu, M.; Zheng, Y.-S. Angew. Chem. Int. Ed. 2022, 61, 1.
[11]
Yuan, Y.-X.; Hu, M.; Zhang, K.-R.; Zhou, T.-T.; Wang, S.; Liu, M.; Zheng, Y.-S. Mater. Horizons. 2020, 7, 3209.
[12]
Liang, Z.-P.; Tang, R.; Qiu, Y.-C.; Wang, Y.; Lu, H.; Wu, Z.-G. Acta Chim. Sinica 2021, 79, 1401. (in Chinese)
[12]
(梁志鹏, 唐瑞, 邱雨晨, 王阳, 陆洪彬, 吴正光, 化学学报, 2021, 79, 1401.)
[13]
Bockova, J.; Jones, N. C.; Meierhenrich, U. J.; Hoffmann, S. V.; Meinert, C. Commun. Chem. 2021, 4, 1.
[14]
Xu, M.; Wu, X.; Yang, Y.; Ma, C.; Li, W.; Yu, H.; Chen, Z.; Li, J.; Zhang, K.; Liu, S. ACS Nano 2020, 14, 11130.
[15]
Hu, M.; Ye, F.-Y.; Du, C.; Wang, W.; Zhou, T.-T.; Gao, M.-L.; Liu, M.; Zheng, Y.-S. ACS Nano 2021, 15, 16673.
[16]
Yan, N.; Zhu, Y.; Jiang, W. Chem. Commun. 2018, 54, 13183.
[17]
Wu, T.; Jiang, Z.; Xue, X.; Wang, S.-C.; Chen, M.; Wang, J.; Liu, H.; Yan, J.; Chan, Y.-T.; Wang, P. Chin. Chem. Lett. 2021, 32, 1911.
[18]
Song, L.; Zhou, Y.; Gao, T.; Yan, P.; Li, H. Acta Chim. Sinica 2021, 79, 1042.
[18]
(宋龙飞, 周妍妍, 高婷, 闫鹏飞, 李洪峰, 化学学报, 2021, 79, 1042.)
[19]
Qin, B.; Yin, Z. H.; Tang, X. Y.; Zhang, S.; Wu, Y. H.; Xu, J. F.; Zhang, X. Prog. Polym. Sci. 2020, 100, 18.
[20]
Tantakitti, F.; Boekhoven, J.; Wang, X.; Kazantsev, R. V.; Yu, T.; Li, J. H.; Zhuang, E.; Zandi, R.; Ortony, J. H.; Newcomb, C. J.; Palmer, L. C.; Shekhawat, G. S.; de la Cruz, M. O.; Schatz, G. C.; Stupp, S. I. Nat. Mater. 2016, 15, 469.
[21]
Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335, 813.
[22]
Li, M.; Lin, W.-B.; Fang, L.; Chen, C.-F. Acta Chim. Sinica 2017, 75, 1150. (in Chinese)
[22]
(李猛, 林伟彬, 房蕾, 陈传峰, 化学学报, 2017, 75, 1150.)
[23]
Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 10037.
[24]
Folmer, B. J. B.; Sijbesma, R. P.; Versteegen, R. M.; van der Rijt, J. A. J.; Meijer, E. W. Adv. Mater. 2000, 12, 874.
[25]
Jia, X.; Shao, C.; Bai, X.; Zhou, Q.; Wu, B.; Wang, L.; Yue, B.; Zhu, H.; Zhu, L. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 4816.
[26]
Gu, J.; Yue, B.; Baryshnikov, G. V.; Li, Z.; Zhang, M.; Shen, S.; Agren, H.; Zhu, L. Research 2021, 2021, 11.
[27]
Zhou, L.-L.; Wu, B.; Li, A.-Z.; Luo, M.-K.; Zhu, L.-L. Chin. J. Lumin. 2021, 42, 296. (in Chinese)
[27]
(周璐璐, 吴斌, 李安泽, 罗梦恺, 朱亮亮, 发光学报, 2021, 42, 296.)
Outlines

/