Communication

A Novel Near-infrared Responsive Lanthanide Upconversion Nanoplatform for Drug Delivery Based on Photocleavage of Cypate

  • Ruomei Liu ,
  • Yanhui Feng ,
  • Zhuo Li ,
  • Shan Lu ,
  • Tianyong Guan ,
  • Xingjun Li ,
  • Yan Liu ,
  • Zhuo Chen ,
  • Xueyuan Chen
Expand
  • a College of Chemistry, Fuzhou University, Fuzhou 350108, China
    b CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2022-01-01

  Online published: 2022-03-15

Supported by

National Natural Science Foundation of China(12174392); National Natural Science Foundation of China(22175179); National Natural Science Foundation of China(22135008); Natural Science Foundation of Fujian Province(2021I0040); Natural Science Foundation of Fujian Province(2021L3024); Natural Science Foundation of Fujian Province(2021Y0067)

Abstract

Light-responsive drug delivery systems (DDS) exhibit the advantages of non-invasive, high controllability and spatio-temporal precision. However, DDS triggered by near-infrared (NIR) light are few and inefficient. In this work, we designed a novel NIR-responsive upconversion nanoplatform for drug delivery. In this nanoplatform, core-shell upconversion nanoparticle (UCNP) NaYF4:Yb,Er@NaYF4 was coated by mesoporous silica, and then successively coupled with NIR dye cypate, amantadine (AD) and β-cyclodextrin (β-CD) to block the pores and entrap the drugs. The cypate molecules with the feature of auto-sensitized photooxidation under 808 nm irradiation were, for the first time, employed as light-responsive moieties in DDS. The obtained nanoplatform was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption/desorption, dynamic light scattering (DLS) and zeta potential analysis. Mechanism of photocleavage of cypate by singlet oxygen (1O2) was also investigated by electron spin resonance (ESR) measurement. The nanoplatform loaded with antibiotic ofloxacin (OFL) showed a low drug leakage (6.9%) in the dark condition and a rapid release (50.9%) upon 808 nm irradiation with a relatively low power density of 0.5 W•cm-2 for 40 min. Moreover, on-demand release of OFL can be achieved by adjusting the irradiation time (0~40 min). In vitro antibacterial experiments showed that the nanoplatform had a much better antibacterial effect against Staphylococcus aureus after 808 nm irradiation as compared with the group without irradiation. These results further verified the excellent NIR-responsive performance for the designed nanoplatform. In addition, the nanoplatform exhibited strong and stable upconversion luminescence (UCL) under 980 nm excitation, which can be applied for DDS tracing and bioimaging. The cytocompatibility of the nanoplatform was evaluated by methyl thiazolyl tetrazolium (MTT) assay, showing that the nanoplatform had no cytotoxic effect on human embryonic liver cell line (LO2) and exhibited great potentials in versatile bioapplications. Our work may open up a new avenue for the exploration of multi-functional NIR-responsive DDS.

Cite this article

Ruomei Liu , Yanhui Feng , Zhuo Li , Shan Lu , Tianyong Guan , Xingjun Li , Yan Liu , Zhuo Chen , Xueyuan Chen . A Novel Near-infrared Responsive Lanthanide Upconversion Nanoplatform for Drug Delivery Based on Photocleavage of Cypate[J]. Acta Chimica Sinica, 2022 , 80(4) : 423 -427 . DOI: 10.6023/A22010001

References

[1]
Lakkadwala, S.; Dos Santos Rodrigues, B.; Sun, C.; Singh, J. J. Control. Release 2019, 307, 247.
[2]
Lu, S.; Tu, D.; Li, X.; Li, R.; Chen, X. Nano Res. 2015, 9, 187.
[3]
Luther, D. C.; Huang, R.; Jeon, T.; Zhang, X.; Lee, Y. W.; Nagaraj, H.; Rotello, V. M. Adv. Drug Deliv. Rev. 2020, 156, 188.
[4]
Wang, Q.; Jiang, H.; Li, Y.; Chen, W.; Li, H.; Peng, K.; Zhang, Z.; Sun, X. Biomaterials 2017, 122, 10.
[5]
Yadav, S.; van Vlerken, L. E.; Little, S. R.; Amiji, M. M. Cancer Chemother. Pharmacol. 2009, 63, 711.
[6]
Zhang, M.; Song, R.; Liu, Y.; Yi, Z.; Meng, X.; Zhang, J.; Tang, Z.; Yao, Z.; Liu, Y.; Liu, X.; Bu, W. Chem 2019, 5, 2171.
[7]
Cai, Z.; Zhang, Y.; Jiang, L.; Zhu, J. Acta Chim. Sinica 2021, 79, 481. (in Chinese)
[7]
(蔡政, 张颖雯, 姜立萍, 朱俊杰, 化学学报, 2021, 79, 481.)
[8]
Han, X.; Zhang, L.; Zhang, Q.; Sui, X.; Qian, M.; Chen, Q.; Wang, J. Acta Chim. Sinica 2021, 79. 794.. (in Chinese)
[8]
(韩旭, 张留伟, 张强, 睢晞航, 钱明, 陈麒先, 王静云, 化学学报, 2021, 79, 794.)
[9]
Liu, G.; Liu, W.; Dong, C. Polym. Chem. 2013, 4, 3431.
[10]
Shi, B.; Ren, N.; Gu, L.; Xu, G.; Wang, R.; Zhu, T.; Zhu, Y.; Fan, C.; Zhao, C.; Tian, H. Angew. Chem. Int. Ed. 2019, 58, 16826.
[11]
Li, Z.; Lu, S.; Liu, W.; Dai, T.; Ke, J.; Li, X.; Li, R.; Zhang, Y.; Chen, Z.; Chen, X. Angew. Chem. Int. Ed. 2021, 60, 19201.
[12]
Huang, J.; Li, Z.; Liu, Z. Acta Chim. Sinica 2021, 79, 1049. (in Chinese)
[12]
(黄菊, 李贞, 刘志洪, 化学学报, 2021, 79, 1049.)
[13]
Xu, J.; Shi, R.; Chen, G.; Dong, S.; Yang, P.; Zhang, Z.; Niu, N.; Gai, S.; He, F.; Fu, Y.; Lin, J. ACS Nano 2020, 14, 9613.
[14]
Xu, J.; Zhou, J.; Chen, Y.; Yang, P.; Lin, J. Coord. Chem. Rev. 2020, 415, 213328.
[15]
Zheng, W.; Huang, P.; Tu, D.; Ma, E.; Zhu, H.; Chen, X. Chem. Soc. Rev. 2015, 44, 1379.
[16]
Cui, L.; Zhang, F.; Wang, Q.; Lin, H.; Yang, C.; Zhang, T.; Tong, R.; An, N.; Qu, F. J. Mater. Chem. B 2015, 3, 7046.
[17]
Liu, J.; Bu, W.; Pan, L.; Shi, J. Angew. Chem. Int. Ed. 2013, 52, 4375.
[18]
Yan, B.; Boyer, J. C.; Branda, N. R.; Zhao, Y. J. Am. Chem. Soc. 2011, 133, 19714.
[19]
Yan, B.; Boyer, J. C.; Habault, D.; Branda, N. R.; Zhao, Y. J. Am. Chem. Soc. 2012, 134, 16558.
[20]
Yao, C.; Wang, P.; Li, X.; Hu, X.; Hou, J.; Wang, L.; Zhang, F. Adv. Mater. 2016, 28, 9341.
[21]
Zhao, L.; Peng, J.; Huang, Q.; Li, C.; Chen, M.; Sun, Y.; Lin, Q.; Zhu, L.; Li, F. Adv. Funct. Mater. 2014, 24, 363.
[22]
Bao, G.; Wen, S.; Lin, G.; Yuan, J.; Lin, J.; Wong, K.-L.; Bünzli, J.-C. G.; Jin, D. Coord. Chem. Rev. 2021, 429, 213642.
[23]
Chen, D.; Zhang, G.; Li, R.; Guan, M.; Wang, X.; Zou, T.; Zhang, Y.; Wang, C.; Shu, C.; Hong, H.; Wan, L. J. J. Am. Chem. Soc. 2018, 140, 7373.
[24]
Wang, H.; Han, R. L.; Yang, L. M.; Shi, J. H.; Liu, Z. J.; Hu, Y.; Wang, Y.; Liu, S. J.; Gan, Y. ACS Appl. Mater. Interfaces 2016, 8, 4416.
[25]
Wang, X.; Meng, G.; Zhang, S.; Liu, X. Sci. Rep. 2016, 6, 29911.
[26]
Yang, G.; Sun, X.; Liu, J.; Feng, L.; Liu, Z. Adv. Funct. Mater. 2016, 26, 4722.
[27]
Zhang, T.; Lin, H.; Cui, L.; An, N.; Tong, R.; Chen, Y.; Yang, C.; Li, X.; Liu, J.; Qu, F. Eur. J. Inorg. Chem. 2016, 2016, 1206.
[28]
Li, N.; Chen, Y.; Zhang, Y. M.; Yang, Y.; Su, Y.; Chen, J. T.; Liu, Y. Sci. Rep. 2014, 4, 4164.
[29]
Cuggino, J. C.; Contreras, C. B.; Jimenez-Kairuz, A.; Maletto, B. A.; Alvarez Igarzabal, C. I. Mol. Pharm. 2014, 11, 2239.
[30]
Li, J.; Li, S.; He, Z. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 999.
[31]
Sezer, A. D.; Akbuga, J. Pharm. Dev. Technol. 2012, 17, 118.
[32]
Xie, J.; Wang, C.; Ning, Q.; Gao, Q.; Gao, C.; Gou, Z.; Ye, J. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 2173.
[33]
You, W.; Tu, D.; Zheng, W.; Shang, X.; Song, X.; Zhou, S.; Liu, Y.; Li, R.; Chen, X. Nanoscale 2018, 10, 11477.
[34]
Li, C.; Liu, J.; Alonso, S.; Li, F.; Zhang, Y. Nanoscale 2012, 4, 6065.
[35]
Zhang, Y. M.; Liu, Y. H.; Liu, Y. Adv. Mater. 2020, 32, e1806158.
[36]
James, N. S.; Cheruku, R. R.; Missert, J. R.; Sunar, U.; Pandey, R. K. Molecules 2018, 23, 1842.
Outlines

/